Open Close
Reference
Citation
Mamolen, M., Smith, A., Andrulis, E.D. (2010). Drosophila melanogaster Dis3 N-terminal domains are required for ribonuclease activities, nuclear localization and exosome interactions.  Nucleic Acids Res. 38(16): 5507--5517.
FlyBase ID
FBrf0211792
Publication Type
Research paper
Abstract

Eukaryotic cells use numerous pathways to regulate RNA production, localization and stability. Several of these pathways are controlled by ribonucleases. The essential ribonuclease, Dis3, plays important roles in distinct RNA metabolic pathways. Despite much progress in understanding general characteristics of the Dis3 enzyme in vitro and in vivo, much less is known about the contributions of Dis3 domains to its activities, subcellular localization and protein-protein interactions. To address these gaps, we constructed a set of Drosophila melanogaster Dis3 (dDis3) mutants and assessed their enzymatic activity in vitro and their localizations and interactions in S2 tissue culture cells. We show that the dDis3 N-terminus is sufficient for endoribonuclease activity in vitro and that proper N-terminal domain structure is critical for activity of the full-length polypeptide. We find that the dDis3 N-terminus also contributes to its subcellular distribution, and is necessary and sufficient for interactions with core exosome proteins. Finally, dDis3 interaction with dRrp6 and dImportin-α3 is independent of core interactions and occurs though two different regions. Taken together, our data suggest that the dDis3 N-terminus is a dynamic and complex hub for RNA metabolism and exosome interactions.

PubMed ID
PubMed Central ID
PMC2938213 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Nucleic Acids Res.
    Title
    Nucleic Acids Research
    Publication Year
    1974-
    ISBN/ISSN
    0305-1048
    Data From Reference
    Genes (11)
    Physical Interactions (10)
    Cell Lines (1)