Open Close
Diangelo, J.R., Erion, R., Crocker, A., Sehgal, A. (2011). The central clock neurons regulate lipid storage in Drosophila.  PLoS ONE 6(5): e19921.
FlyBase ID
Publication Type
Research paper

A proper balance of lipid breakdown and synthesis is essential for achieving energy homeostasis as alterations in either of these processes can lead to pathological states such as obesity. The regulation of lipid metabolism is quite complex with multiple signals integrated to control overall triglyceride levels in metabolic tissues. Based upon studies demonstrating effects of the circadian clock on metabolism, we sought to determine if the central clock cells in the Drosophila brain contribute to lipid levels in the fat body, the main nutrient storage organ of the fly. Here, we show that altering the function of the Drosophila central clock neurons leads to an increase in fat body triglycerides. We also show that although triglyceride levels are not affected by age, they are increased by expression of the amyloid-beta protein in central clock neurons. The effect on lipid storage seems to be independent of circadian clock output as changes in triglycerides are not always observed in genetic manipulations that result in altered locomotor rhythms. These data demonstrate that the activity of the central clock neurons is necessary for proper lipid storage.

PubMed ID
PubMed Central ID
PMC3097222 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    PLoS ONE
    PLoS ONE
    Publication Year
    Data From Reference