FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Bao, R., Friedrich, M. (2009). Molecular evolution of the Drosophila retinome: exceptional gene gain in the higher Diptera.  Mol. Biol. Evol. 26(6): 1273--1287.
FlyBase ID
FBrf0215390
Publication Type
Research paper
Abstract
Using genomic information from mosquito, red flour beetle, honeybee, mouse, and sea anemone, we have studied the molecular evolution of 91 Drosophila genes involved in eye primordium determination, retinal differentiation, and phototransduction. Our results show that the majority of these gene sequences predate the diversification of endopterygote insects. However, all three functional groups contain a conspicuous fraction of evolutionarily younger genes, which originated by tandem duplication in the lineage leading to Drosophila, whereas gene duplications are rare in other insect lineages. We conclude that the retention of duplicated genes spiked during the early diversification of the higher Diptera possibly due to an extended period of exceptional population size reduction. Genetic data suggest that gene duplication played an important role in the evolution of visual performance in the fast flying higher Diptera by spatial or intracellular subfunctionalization. Developmental gene duplications, by contrast, predominantly retained overlapping expression patterns and preserved partial to complete redundancy consistent with a role in boosting developmental robustness.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Biol. Evol.
    Title
    Molecular Biology and Evolution
    Publication Year
    1983-
    ISBN/ISSN
    0737-4038 1537-1719
    Data From Reference