FB2025_02 , released April 17, 2025
Reference Report
Open Close
Reference
Citation
Hartl, M., Loschek, L.F., Stephan, D., Siju, K.P., Knappmeyer, C., Kadow, I.C. (2011). A New Prospero and microRNA-279 Pathway Restricts CO2 Receptor Neuron Formation.  J. Neurosci. 31(44): 15660--15673.
FlyBase ID
FBrf0216631
Publication Type
Research paper
Abstract
CO(2) sensation represents an interesting example of nervous system and behavioral evolutionary divergence. The underlying molecular mechanisms, however, are not understood. Loss of microRNA-279 in Drosophila melanogaster leads to the formation of a CO(2) sensory system partly similar to the one of mosquitoes. Here, we show that a novel allele of the pleiotropic transcription factor Prospero resembles the miR-279 phenotype. We use a combination of genetics and in vitro and in vivo analysis to demonstrate that Pros participates in the regulation of miR-279 expression, and that reexpression of miR-279 rescues the pros CO(2) neuron phenotype. We identify common target molecules of miR-279 and Pros in bioinformatics analysis, and show that overexpression of the transcription factors Nerfin-1 and Escargot (Esg) is sufficient to induce formation of CO(2) neurons on maxillary palps. Our results suggest that Prospero restricts CO(2) neuron formation indirectly via miR-279 and directly by repressing the shared target molecules, Nerfin-1 and Esg, during olfactory system development. Given the important role of Pros in differentiation of the nervous system, we anticipate that miR-mediated signal tuning represents a powerful method for olfactory sensory system diversification during evolution.
PubMed ID
PubMed Central ID
PMC6623035 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Neurosci.
    Title
    Journal of Neuroscience
    Publication Year
    1981-
    ISBN/ISSN
    0270-6474 1529-2401
    Data From Reference