FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Neyen, C., Poidevin, M., Roussel, A., Lemaitre, B. (2012). Tissue- and Ligand-Specific Sensing of Gram-Negative Infection in Drosophila by PGRP-LC Isoforms and PGRP-LE.  J. Immunol. 189(4): 1886--1897.
FlyBase ID
FBrf0219094
Publication Type
Research paper
Abstract
The Drosophila antimicrobial response is one of the best characterized systems of pattern recognition receptor-mediated defense in metazoans. Drosophila senses Gram-negative bacteria via two peptidoglycan recognition proteins (PGRPs), membrane-bound PGRP-LC and secreted/cytosolic PGRP-LE, which relay diaminopimelic acid (DAP)-type peptidoglycan sensing to the Imd signaling pathway. In the case of PGRP-LC, differential splicing of PGRP domain-encoding exons to a common intracellular domain-encoding exon generates three receptor isoforms, which differ in their peptidoglycan binding specificities. In this study, we used Phi31-mediated recombineering to generate fly lines expressing specific isoforms of PGRP-LC and assessed the tissue-specific roles of PGRP-LC isoforms and PGRP-LE in the antibacterial response. Our in vivo studies demonstrate the key role of PGRP-LCx in sensing DAP-type peptidoglycan-containing Gram-negative bacteria or Gram-positive bacilli during systemic infection. We also highlight the contribution of PGRP-LCa/x heterodimers to the systemic immune response to Gram-negative bacteria through sensing of tracheal cytotoxin (TCT), whereas PGRP-LCy may have a minor role in antagonizing the immune response. Our results reveal that both PGRP-LC and PGRP-LE contribute to the intestinal immune response, with a predominant role of cytosolic PGRP-LE in the midgut, the central section of endodermal origin where PGRP-LE is enriched. Our in vivo model also definitively establishes TCT as the long-distance elicitor of systemic immune responses to intestinal bacteria observed in a loss-of-tolerance model. In conclusion, our study delineates how a combination of extracellular sensing by PGRP-LC isoforms and intracellular sensing through PGRP-LE provides sophisticated mechanisms to detect and differentiate between infections by different DAP-type bacteria in Drosophila.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Immunol.
    Title
    Journal of Immunology
    Publication Year
    1950-
    ISBN/ISSN
    0022-1767
    Data From Reference
    Alleles (11)
    Gene Groups (1)
    Genes (6)
    Natural transposons (1)
    Experimental Tools (1)
    Transgenic Constructs (7)