Open Close
Reference
Citation
Azad, P., Zhou, D., Zarndt, R., Haddad, G.G. (2012). Identification of Genes Underlying Hypoxia Tolerance in Drosophila by a P-element Screen.  G3 (Bethesda) 2(10): 1169--1178.
FlyBase ID
FBrf0219647
Publication Type
Research paper
Abstract

Hypoxia occurs in physiologic conditions (e.g. high altitude) or during pathologic states (e.g. ischemia). Our research is focused on understanding the molecular mechanisms that lead to adaptation and survival or injury to hypoxic stress using Drosophila as a model system. To identify genes involved in hypoxia tolerance, we screened the P-SUP P-element insertion lines available for all the chromosomes of Drosophila. We screened for the eclosion rates of embryos developing under 5% O(2) condition and the number of adult flies surviving one week after eclosion in the same hypoxic environment. Out of 2187 lines (covering ~1870 genes) screened, 44 P-element lines representing 44 individual genes had significantly higher eclosion rates (i.e. >70%) than those of the controls (i.e. ~7-8%) under hypoxia. The molecular function of these candidate genes ranged from cell cycle regulation, DNA or protein binding, GTP binding activity, and transcriptional regulators. In addition, based on pathway analysis, we found these genes are involved in multiple pathways, such as Notch, Wnt, Jnk, and Hedgehog. Particularly, we found that 20 out of the 44 candidate genes are linked to Notch signaling pathway, strongly suggesting that this pathway is essential for hypoxia tolerance in flies. By employing the UAS/RNAi-Gal4 system, we discovered that genes such as osa (linked to Wnt and Notch pathways) and lqf (Notch regulator) play an important role in survival and development under hypoxia in Drosophila. Based on these results and our previous studies, we conclude that hypoxia tolerance is a polygenic trait including the Notch pathway.

PubMed ID
PubMed Central ID
PMC3464109 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    G3 (Bethesda)
    Title
    G3 : genes - genomes - genetics
    ISBN/ISSN
    2160-1836
    Data From Reference