Open Close
Reference
Citation
Banerjee, K.K., Ayyub, C., Sengupta, S., Kolthur-Seetharam, U. (2013). Fat Body dSir2 Regulates Muscle Mitochondrial Physiology and Energy Homeostasis Nonautonomously and Mimics the Autonomous Functions of dSir2 in Muscles.  Mol. Cell. Biol. 33(2): 252--264.
FlyBase ID
FBrf0220399
Publication Type
Research paper
Abstract

Sir2 is an evolutionarily conserved NAD(+)-dependent deacetylase which has been shown to play a critical role in glucose and fat metabolism. In this study, we have perturbed Drosophila Sir2 (dSir2) expression, bidirectionally, in muscles and the fat body. We report that dSir2 plays a critical role in insulin signaling, glucose homeostasis, and mitochondrial functions. Importantly, we establish the nonautonomous functions of fat body dSir2 in regulating mitochondrial physiology and insulin signaling in muscles. We have identified a novel interplay between dSir2 and dFOXO at an organismal level, which involves Drosophila insulin-like peptide (dILP)-dependent insulin signaling. By genetic perturbations and metabolic rescue, we provide evidence to illustrate that fat body dSir2 mediates its effects on the muscles via free fatty acids (FFA) and dILPs (from the insulin-producing cells [IPCs]). In summary, we show that fat body dSir2 is a master regulator of organismal energy homeostasis and is required for maintaining the metabolic regulatory network across tissues.

PubMed ID
PubMed Central ID
PMC3554107 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Cell. Biol.
    Title
    Molecular and Cellular Biology
    Publication Year
    1981-
    ISBN/ISSN
    0270-7306
    Data From Reference