FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Daigle, J.G., Lanson, N.A., Smith, R.B., Casci, I., Maltare, A., Monaghan, J., Nichols, C.D., Kryndushkin, D., Shewmaker, F., Pandey, U.B. (2013). RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations.  Hum. Mol. Genet. 22(6): 1193--1205.
FlyBase ID
FBrf0220846
Publication Type
Research paper
Abstract
Amyotrophic lateral sclerosis (ALS) is an uncommon neurodegenerative disease caused by degeneration of upper and lower motor neurons. Several genes, including SOD1, TDP-43, FUS, Ubiquilin 2, C9orf72 and Profilin 1, have been linked with the sporadic and familiar forms of ALS. FUS is a DNA/RNA-binding protein (RBP) that forms cytoplasmic inclusions in ALS and frontotemporal lobular degeneration (FTLD) patients' brains and spinal cords. However, it is unknown whether the RNA-binding ability of FUS is required for causing ALS pathogenesis. Here, we exploited a Drosophila model of ALS and neuronal cell lines to elucidate the role of the RNA-binding ability of FUS in regulating FUS-mediated toxicity, cytoplasmic mislocalization and incorporation into stress granules (SGs). To determine the role of the RNA-binding ability of FUS in ALS, we mutated FUS RNA-binding sites (F305L, F341L, F359L, F368L) and generated RNA-binding-incompetent FUS mutants with and without ALS-causing mutations (R518K or R521C). We found that mutating the aforementioned four phenylalanine (F) amino acids to leucines (L) (4F-L) eliminates FUS RNA binding. We observed that these RNA-binding mutations block neurodegenerative phenotypes seen in the fly brains, eyes and motor neurons compared with the expression of RNA-binding-competent FUS carrying ALS-causing mutations. Interestingly, RNA-binding-deficient FUS strongly localized to the nucleus of Drosophila motor neurons and mammalian neuronal cells, whereas FUS carrying ALS-linked mutations was distributed to the nucleus and cytoplasm. Importantly, we determined that incorporation of mutant FUS into the SG compartment is dependent on the RNA-binding ability of FUS. In summary, we demonstrate that the RNA-binding ability of FUS is essential for the neurodegenerative phenotype in vivo of mutant FUS (either through direct contact with RNA or through interactions with other RBPs).
PubMed ID
PubMed Central ID
PMC3578413 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Hum. Mol. Genet.
    Title
    Human Molecular Genetics
    Publication Year
    1992-
    ISBN/ISSN
    0964-6906
    Data From Reference