FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Unhavaithaya, Y., Park, E.A., Royzman, I., Orr-Weaver, T.L. (2013). Drosophila Embryonic Cell-Cycle Mutants.  G3 (Bethesda) 3(10): 1875--1880.
FlyBase ID
FBrf0222966
Publication Type
Research paper
Abstract
Nearly all cell division mutants in Drosophila were recovered in late larval/pupal lethal screens, with less than 10 embryonic lethal mutants identified, because larval development occurs without a requirement for cell division. Only cells in the nervous system and the imaginal cells that generate the adult body divide during larval stages, with larval tissues growing by increasing ploidy rather than cell number. Thus, most mutants perturbing mitosis or the cell cycle do not manifest a phenotype until the adult body differentiates in late larval and pupal stages. To identify cell-cycle components whose maternal pools are depleted in embryogenesis or that have specific functions in embryogenesis, we screened for mutants defective in cell division during embryogenesis. Five new alleles of Cyclin E were recovered, ranging from a missense mutation that is viable to stop codons causing embryonic lethality. These permitted us to investigate the requirements for Cyclin E function in neuroblast cell fate determination, a role previously shown for a null Cyclin E allele. The mutations causing truncation of the protein affect cell fate of the NB6-4 neuroblast, whereas the weak missense mutation has no effect. We identified mutations in the pavarotti (pav) and tumbleweed (tum) genes needed for cytokinesis by a phenotype of large and multinucleate cells in the embryonic epidermis and nervous system. Other mutations affecting the centromere protein CAL1 and the kinetochore protein Spc105R caused mitotic defects in the nervous system.
PubMed ID
PubMed Central ID
PMC3789813 (PMC) (EuropePMC)
Related Publication(s)
Personal communication to FlyBase

pim[249].
Orr-Weaver, 2018.2.11, pim[249]. [FBrf0238061]

Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    G3 (Bethesda)
    Title
    G3 : genes - genomes - genetics
    ISBN/ISSN
    2160-1836
    Data From Reference