Open Close
Reference
Citation
Sanhueza, M., Zechini, L., Gillespie, T., Pennetta, G. (2014). Gain-of-function mutations in the ALS8 causative gene VAPB have detrimental effects on neurons and muscles.  Biol. Open 3(1): 59--71.
FlyBase ID
FBrf0223872
Publication Type
Research paper
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a motor neuron degenerative disease characterized by a progressive, and ultimately fatal, muscle paralysis. The human VAMP-Associated Protein B (hVAPB) is the causative gene of ALS type 8. Previous studies have shown that a loss-of-function mechanism is responsible for VAPB-induced ALS. Recently, a novel mutation in hVAPB (V234I) has been identified but its pathogenic potential has not been assessed. We found that neuronal expression of the V234I mutant allele in Drosophila (DVAP-V260I) induces defects in synaptic structure and microtubule architecture that are opposite to those associated with DVAP mutants and transgenic expression of other ALS-linked alleles. Expression of DVAP-V260I also induces aggregate formation, reduced viability, wing postural defects, abnormal locomotion behavior, nuclear abnormalities, neurodegeneration and upregulation of the heat-shock-mediated stress response. Similar, albeit milder, phenotypes are associated with the overexpression of the wild-type protein. These data show that overexpressing the wild-type DVAP is sufficient to induce the disease and that DVAP-V260I is a pathogenic allele with increased wild-type activity. We propose that a combination of gain- and loss-of-function mechanisms is responsible for VAPB-induced ALS.
PubMed ID
PubMed Central ID
PMC3892161 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Biol. Open
    Title
    Biology open
    ISBN/ISSN
    2046-6390
    Data From Reference
    Alleles (5)
    Genes (4)
    Human Disease Models (1)
    Natural transposons (1)
    Insertions (2)
    Experimental Tools (1)
    Transgenic Constructs (3)