FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Huang, S., Zhang, Z., Zhang, C., Lv, X., Zheng, X., Chen, Z., Sun, L., Wang, H., Zhu, Y., Zhang, J., Yang, S., Lu, Y., Sun, Q., Tao, Y., Liu, F., Zhao, Y., Chen, D. (2013). Activation of Smurf E3 ligase promoted by smoothened regulates hedgehog signaling through targeting patched turnover.  PLoS Biol. 11(11): e1001721.
FlyBase ID
FBrf0225546
Publication Type
Research paper
Abstract
Hedgehog signaling plays conserved roles in controlling embryonic development; its dysregulation has been implicated in many human diseases including cancers. Hedgehog signaling has an unusual reception system consisting of two transmembrane proteins, Patched receptor and Smoothened signal transducer. Although activation of Smoothened and its downstream signal transduction have been intensively studied, less is known about how Patched receptor is regulated, and particularly how this regulation contributes to appropriate Hedgehog signal transduction. Here we identified a novel role of Smurf E3 ligase in regulating Hedgehog signaling by controlling Patched ubiquitination and turnover. Moreover, we showed that Smurf-mediated Patched ubiquitination depends on Smo activity in wing discs. Mechanistically, we found that Smo interacts with Smurf and promotes it to mediate Patched ubiquitination by targeting the K1261 site in Ptc. The further mathematic modeling analysis reveals that a bidirectional control of activation of Smo involving Smurf and Patched is important for signal-receiving cells to precisely interpret external signals, thereby maintaining Hedgehog signaling reliability. Finally, our data revealed an evolutionarily conserved role of Smurf proteins in controlling Hh signaling by targeting Ptc during development.
PubMed ID
PubMed Central ID
PMC3841102 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    PLoS Biol.
    Title
    PLoS Biology
    Publication Year
    2003-
    ISBN/ISSN
    1545-7885 1544-9173
    Data From Reference