FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Bingol, B., Tea, J.S., Phu, L., Reichelt, M., Bakalarski, C.E., Song, Q., Foreman, O., Kirkpatrick, D.S., Sheng, M. (2014). The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy.  Nature 510(7505): 370--375.
FlyBase ID
FBrf0225665
Publication Type
Research paper
Abstract
Cells maintain healthy mitochondria by degrading damaged mitochondria through mitophagy; defective mitophagy is linked to Parkinson's disease. Here we report that USP30, a deubiquitinase localized to mitochondria, antagonizes mitophagy driven by the ubiquitin ligase parkin (also known as PARK2) and protein kinase PINK1, which are encoded by two genes associated with Parkinson's disease. Parkin ubiquitinates and tags damaged mitochondria for clearance. Overexpression of USP30 removes ubiquitin attached by parkin onto damaged mitochondria and blocks parkin's ability to drive mitophagy, whereas reducing USP30 activity enhances mitochondrial degradation in neurons. Global ubiquitination site profiling identified multiple mitochondrial substrates oppositely regulated by parkin and USP30. Knockdown of USP30 rescues the defective mitophagy caused by pathogenic mutations in parkin and improves mitochondrial integrity in parkin- or PINK1-deficient flies. Knockdown of USP30 in dopaminergic neurons protects flies against paraquat toxicity in vivo, ameliorating defects in dopamine levels, motor function and organismal survival. Thus USP30 inhibition is potentially beneficial for Parkinson's disease by promoting mitochondrial clearance and quality control.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Nature
    Title
    Nature
    Publication Year
    1869-
    ISBN/ISSN
    0028-0836
    Data From Reference
    Alleles (9)
    Genes (7)
    Human Disease Models (2)
    Natural transposons (1)
    Experimental Tools (1)
    Transgenic Constructs (7)