Open Close
Reference
Citation
Calap-Quintana, P., Soriano, S., Llorens, J.V., Al-Ramahi, I., Botas, J., Moltó, M.D., Martínez-Sebastián, M.J. (2015). TORC1 Inhibition by Rapamycin Promotes Antioxidant Defences in a Drosophila Model of Friedreich's Ataxia.  PLoS ONE 10(7): e0132376.
FlyBase ID
FBrf0229052
Publication Type
Research paper
Abstract

Friedreich's ataxia (FRDA), the most common inherited ataxia in the Caucasian population, is a multisystemic disease caused by a significant decrease in the frataxin level. To identify genes capable of modifying the severity of the symptoms of frataxin depletion, we performed a candidate genetic screen in a Drosophila RNAi-based model of FRDA. We found that genetic reduction in TOR Complex 1 (TORC1) signalling improves the impaired motor performance phenotype of FRDA model flies. Pharmacologic inhibition of TORC1 signalling by rapamycin also restored this phenotype and increased the lifespan and ATP levels. Furthermore, rapamycin reduced the altered levels of malondialdehyde + 4-hydroxyalkenals and total glutathione of the model flies. The rapamycin-mediated protection against oxidative stress is due in part to an increase in the transcription of antioxidant genes mediated by cap-n-collar (Drosophila ortholog of Nrf2). Our results suggest that autophagy is indeed necessary for the protective effect of rapamycin in hyperoxia. Rapamycin increased the survival and aconitase activity of model flies subjected to high oxidative insult, and this improvement was abolished by the autophagy inhibitor 3-methyladenine. These results point to the TORC1 pathway as a new potential therapeutic target for FRDA and as a guide to finding new promising molecules for disease treatment.

PubMed ID
PubMed Central ID
PMC4497667 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    PLoS ONE
    Title
    PLoS ONE
    Publication Year
    2006-
    ISBN/ISSN
    1932-6203
    Data From Reference
    Genes (16)
    Human Disease Models (1)