Conserved piRNA Expression from a Distinct Set of piRNA Cluster Loci in Eutherian Mammals.
Chirn et al., 2015, PLoS Genet. 11(11): e1005652 [
FBrf0231784]
Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila.
Brennecke et al., 2007, Cell 128(6): 1089--1103 [
FBrf0200494]
Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs.
Ruby et al., 2007, Genome Res. 17(12): 1850--1864 [
FBrf0202916]
The birth and death of microRNA genes in Drosophila.
Lu et al., 2008, Nat. Genet. 40(3): 351--355 [
FBrf0202982]
Functionally distinct regulatory RNAs generated by bidirectional transcription and processing of microRNA loci.
Tyler et al., 2008, Genes Dev. 22(1): 26--36 [
FBrf0203073]
Endogenous RNA interference provides a somatic Defense against Drosophila transposons.
Chung et al., 2008, Curr. Biol. 18(11): 795--802 [
FBrf0204804]
An endogenous small interfering RNA pathway in Drosophila.
Czech et al., 2008, Nature 453(7196): 798--802 [
FBrf0205160]
Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells.
Ghildiyal et al., 2008, Science 320(5879): 1077--1081 [
FBrf0205170]
The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs.
Okamura et al., 2008, Nature 453(7196): 803--806 [
FBrf0205296]
An epigenetic role for maternally inherited piRNAs in transposon silencing.
Brennecke et al., 2008, Science 322(5906): 1387--1392 [
FBrf0206357]
Dicing of viral replication intermediates during silencing of latent Drosophila viruses.
Flynt et al., 2009, Proc. Natl. Acad. Sci. U.S.A. 106(13): 5270--5275 [
FBrf0207830]
Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary.
Malone et al., 2009, Cell 137(3): 522--535 [
FBrf0208016]
Processing of Drosophila endo-siRNAs depends on a specific Loquacious isoform.
Zhou et al., 2009, RNA 15(10): 1886--1895 [
FBrf0208906]
Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line.
Lau et al., 2009, Genome Res. 19(10): 1776--1785 [
FBrf0209029]
Endo-siRNAs depend on a new isoform of loquacious and target artificially introduced, high-copy sequences.
Hartig et al., 2009, EMBO J. 28(19): 2932--2944 [
FBrf0209063]
Hierarchical rules for Argonaute loading in Drosophila.
Czech et al., 2009, Mol. Cell 36(3): 445--456 [
FBrf0209303]
Distinct mechanisms for microRNA strand selection by Drosophila Argonautes.
Okamura et al., 2009, Mol. Cell 36(3): 431--444 [
FBrf0209322]
Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway.
Ghildiyal et al., 2010, RNA 16(1): 43--56 [
FBrf0209572]
Loqs and R2D2 act sequentially in the siRNA pathway in Drosophila.
Marques et al., 2010, Nat. Struct. Mol. Biol. 17(1): 24--30 [
FBrf0209625]
A broadly conserved pathway generates 3'UTR-directed primary piRNAs.
Robine et al., 2009, Curr. Biol. 19(24): 2066--2076 [
FBrf0209698]
Target RNA-directed trimming and tailing of small silencing RNAs.
Ameres et al., 2010, Science 328(5985): 1534--1539 [
FBrf0211070]
Small RNA-based silencing strategies for transposons in the process of invading Drosophila species.
Rozhkov et al., 2010, RNA 16(8): 1634--1645 [
FBrf0211292]
An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila.
Olivieri et al., 2010, EMBO J. 29(19): 3301--3317 [
FBrf0212004]
Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila.
Haase et al., 2010, Genes Dev. 24(22): 2499--2504 [
FBrf0212277]
R2D2 Organizes Small Regulatory RNA Pathways in Drosophila.
Okamura et al., 2011, Mol. Cell. Biol. 31(4): 884--896 [
FBrf0212879]
Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence.
Berezikov et al., 2011, Genome Res. 21(2): 203--215 [
FBrf0213080]
A genome-scale shRNA resource for transgenic RNAi in Drosophila.
Ni et al., 2011, Nat. Methods 8(5): 405--407 [
FBrf0213581]
piRNA Production Requires Heterochromatin Formation in Drosophila.
Rangan et al., 2011, Curr. Biol. 21(16): 1373--1379 [
FBrf0214714]
Vreteno, a gonad-specific protein, is essential for germline development and primary piRNA biogenesis in Drosophila.
Zamparini et al., 2011, Development 138(18): 4039--4050 [
FBrf0214783]
Argonaute loading improves the 5' precision of both MicroRNAs and their miRNA* strands in flies.
Seitz et al., 2008, Curr. Biol. 18(2): 147--151 [
FBrf0216071]
A systematic analysis of Drosophila TUDOR domain-containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors.
Handler et al., 2011, EMBO J. 30(19): 3977--3993 [
FBrf0216344]
The 3'-to-5' Exoribonuclease Nibbler Shapes the 3' Ends of MicroRNAs Bound to Drosophila Argonaute1.
Han et al., 2011, Curr. Biol. 21(22): 1878--1887 [
FBrf0216729]
The Exoribonuclease Nibbler Controls 3' End Processing of MicroRNAs in Drosophila.
Liu et al., 2011, Curr. Biol. 21(22): 1888--1893 [
FBrf0216782]
Diversity of miRNAs, siRNAs, and piRNAs across 25 Drosophila cell lines.
Wen et al., 2014, Genome Res. 24(7): 1236--1250 [
FBrf0225529]