Open Close
Carbone, M.A., Yamamoto, A., Huang, W., Lyman, R.A., Meadors, T.B., Yamamoto, R., Anholt, R.R., Mackay, T.F. (2016). Genetic architecture of natural variation in visual senescence in Drosophila.  Proc. Natl. Acad. Sci. U.S.A. 113(43): E6620--EE6629.
FlyBase ID
Publication Type
Research paper

Senescence, i.e., functional decline with age, is a major determinant of health span in a rapidly aging population, but the genetic basis of interindividual variation in senescence remains largely unknown. Visual decline and age-related eye disorders are common manifestations of senescence, but disentangling age-dependent visual decline in human populations is challenging due to inability to control genetic background and variation in histories of environmental exposures. We assessed the genetic basis of natural variation in visual senescence by measuring age-dependent decline in phototaxis using Drosophila melanogaster as a genetic model system. We quantified phototaxis at 1, 2, and 4 wk of age in the sequenced, inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and found an average decline in phototaxis with age. We observed significant genetic variation for phototaxis at each age and significant genetic variation in senescence of phototaxis that is only partly correlated with phototaxis. Genome-wide association analyses in the DGRP and a DGRP-derived outbred, advanced intercross population identified candidate genes and genetic networks associated with eye and nervous system development and function, including seven genes with human orthologs previously associated with eye diseases. Ninety percent of candidate genes were functionally validated with targeted RNAi-mediated suppression of gene expression. Absence of candidate genes previously implicated with longevity indicates physiological systems may undergo senescence independent of organismal life span. Furthermore, we show that genes that shape early developmental processes also contribute to senescence, demonstrating that senescence is part of a genetic continuum that acts throughout the life span.

PubMed ID
PubMed Central ID
PMC5087026 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Proc. Natl. Acad. Sci. U.S.A.
    Proceedings of the National Academy of Sciences of the United States of America
    Publication Year
    Data From Reference