FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Gerdøe-Kristensen, S., Lund, V.K., Wandall, H.H., Kjaerulff, O. (2017). Mactosylceramide prevents glial cell overgrowth by inhibiting insulin and fibroblast growth factor receptor signaling.  J. Cell. Physiol. 232(11): 3112--3127.
FlyBase ID
FBrf0236147
Publication Type
Research paper
Abstract
Receptor tyrosine kinase (RTK) signaling controls key aspects of cellular differentiation, proliferation, survival, metabolism, and migration. Deregulated RTK signaling also underlies many cancers. Glycosphingolipids (GSL) are essential elements of the plasma membrane. By affecting clustering and activity of membrane receptors, GSL modulate signal transduction, including that mediated by the RTK. GSL are abundant in the nervous system, and glial development in Drosophila is emerging as a useful model for studying how GSL modulate RTK signaling. Drosophila has a simple GSL biosynthetic pathway, in which the mannosyltransferase Egghead controls conversion of glucosylceramide (GlcCer) to mactosylceramide (MacCer). Lack of elongated GSL in egghead (egh) mutants causes overgrowth of subperineurial glia (SPG), largely due to aberrant activation of phosphatidylinositol 3-kinase (PI3K). However, to what extent this effect involves changes in upstream signaling events is unresolved. We show here that glial overgrowth in egh is strongly linked to increased activation of Insulin and fibroblast growth factor receptors (FGFR). Glial hypertrophy is phenocopied when overexpressing gain-of-function mutants of the Drosophila insulin receptor (InR) and the FGFR homolog Heartless (Htl) in wild type SPG, and is suppressed by inhibiting Htl and InR activity in egh. Knockdown of GlcCer synthase in the SPG fails to suppress glial overgrowth in egh nerves, and slightly promotes overgrowth in wild type, suggesting that RTK hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of insulin and fibroblast growth factor receptors in Drosophila glia.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Cell. Physiol.
    Title
    Journal of Cellular Physiology
    Publication Year
    1966-
    ISBN/ISSN
    0021-9541
    Data From Reference
    Genes (9)