Open Close
Reference
Citation
Poe, A.R., Tang, L., Wang, B., Li, Y., Sapar, M.L., Han, C. (2017). Dendritic space-filling requires a neuronal type-specific extracellular permissive signal in Drosophila.  Proc. Natl. Acad. Sci. U.S.A. 114(38): E8062--EE8071.
FlyBase ID
FBrf0236760
Publication Type
Research paper
Abstract

Neurons sometimes completely fill available space in their receptive fields with evenly spaced dendrites to uniformly sample sensory or synaptic information. The mechanisms that enable neurons to sense and innervate all space in their target tissues are poorly understood. Using Drosophila somatosensory neurons as a model, we show that heparan sulfate proteoglycans (HSPGs) Dally and Syndecan on the surface of epidermal cells act as local permissive signals for the dendritic growth and maintenance of space-filling nociceptive C4da neurons, allowing them to innervate the entire skin. Using long-term time-lapse imaging with intact Drosophila larvae, we found that dendrites grow into HSPG-deficient areas but fail to stay there. HSPGs are necessary to stabilize microtubules in newly formed high-order dendrites. In contrast to C4da neurons, non-space-filling sensory neurons that develop in the same microenvironment do not rely on HSPGs for their dendritic growth. Furthermore, HSPGs do not act by transporting extracellular diffusible ligands or require leukocyte antigen-related (Lar), a receptor protein tyrosine phosphatase (RPTP) and the only known Drosophila HSPG receptor, for promoting dendritic growth of space-filling neurons. Interestingly, another RPTP, Ptp69D, promotes dendritic growth of C4da neurons in parallel to HSPGs. Together, our data reveal an HSPG-dependent pathway that specifically allows dendrites of space-filling neurons to innervate all target tissues in Drosophila.

PubMed ID
PubMed Central ID
PMC5617288 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Proc. Natl. Acad. Sci. U.S.A.
    Title
    Proceedings of the National Academy of Sciences of the United States of America
    Publication Year
    1915-
    ISBN/ISSN
    0027-8424
    Data From Reference
    Aberrations (1)
    Alleles (34)
    Genes (17)
    Natural transposons (2)
    Insertions (4)
    Experimental Tools (11)
    Transgenic Constructs (24)