Open Close
Tusco, R., Jacomin, A.C., Jain, A., Penman, B.S., Larsen, K.B., Johansen, T., Nezis, I.P. (2017). Kenny mediates selective autophagic degradation of the IKK complex to control innate immune responses.  Nat. Commun. 8(1): 1264.
FlyBase ID
Publication Type
Research paper

Selective autophagy is a catabolic process with which cellular material is specifically targeted for degradation by lysosomes. The function of selective autophagic degradation of self-components in the regulation of innate immunity is still unclear. Here we show that Drosophila Kenny, the homolog of mammalian IKKγ, is a selective autophagy receptor that mediates the degradation of the IκB kinase complex. Selective autophagic degradation of the IκB kinase complex prevents constitutive activation of the immune deficiency pathway in response to commensal microbiota. We show that autophagy-deficient flies have a systemic innate immune response that promotes a hyperplasia phenotype in the midgut. Remarkably, human IKKγ does not interact with mammalian Atg8-family proteins. Using a mathematical model, we suggest mechanisms by which pathogen selection might have driven the loss of LIR motif functionality during evolution. Our results suggest that there may have been an autophagy-related switch during the evolution of the IKKγ proteins in metazoans.

PubMed ID
PubMed Central ID
PMC5668318 (PMC) (EuropePMC)
Related Publication(s)
Personal communication to FlyBase

Nezis insertions.
Nezis, 2020.5.1, Nezis insertions. [FBrf0245572]


Selective autophagic degradation of the IKK complex in Drosophila is mediated by Kenny/IKKγ to control inflammation.
Jacomin and Nezis, 2020, Mol. Cell. Oncol. 7(1): 1682309 [FBrf0244712]

Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Nat. Commun.
    Nature communications
    Data From Reference