FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Takeda, M., Sami, M.M., Wang, Y.C. (2018). A homeostatic apical microtubule network shortens cells for epithelial folding via a basal polarity shift.  Nat. Cell Biol. 20(1): 36--45.
FlyBase ID
FBrf0237610
Publication Type
Research paper
Abstract
Epithelial folding is typically driven by localized actomyosin contractility. However, it remains unclear how epithelia deform when myosin levels are low and uniform. In the Drosophila gastrula, dorsal fold formation occurs despite a lack of localized myosin changes, while the fold-initiating cells reduce cell height following basal shifts of polarity via an unknown mechanism. We show that cell shortening depends on an apical microtubule network organized by the CAMSAP protein Patronin. Prior to gastrulation, microtubule forces generated by the minus-end motor dynein scaffold the apical cell cortex into a dome-like shape, while the severing enzyme Katanin facilitates network remodelling to ensure tissue-wide cell size homeostasis. During fold initiation, Patronin redistributes following basal polarity shifts in the initiating cells, apparently weakening the scaffolding forces to allow dome descent. The homeostatic network that ensures size/shape homogeneity is thus repurposed for cell shortening, linking epithelial polarity to folding via a microtubule-based mechanical mechanism.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Nat. Cell Biol.
    Title
    Nature Cell Biology
    Publication Year
    1999-
    ISBN/ISSN
    1465-7392 1476-4679
    Data From Reference