Open Close
Reference
Citation
Schmidt, A., Grosshans, J. (2018). Dynamics of cortical domains in early Drosophila development.  J. Cell Sci. 131(7): jcs212795.
FlyBase ID
FBrf0238600
Publication Type
Review
Abstract
Underlying the plasma membrane of eukaryotic cells is an actin cortex that includes actin filaments and associated proteins. A special feature of all polarized and epithelial cells are cortical domains, each of which is characterized by specific sets of proteins. Typically, an epithelial cell contains apical, subapical, lateral and basal domains. The domain-specific protein sets contain evolutionarily conserved proteins, as well as cell-type-specific factors. Among the conserved proteins are, the Par proteins, Crumbs complex and the lateral proteins Scribbled and Discs large 1. Organization of the plasma membrane into cortical domains is dynamic and depends on cell type, differentiation and developmental stage. The dynamics of cortical organization is strikingly visible in early Drosophila embryos, which increase the number of distinct cortical domains from one, during the pre-blastoderm stage, to two in syncytial blastoderm embryos, before finally acquiring the four domains that are typical for epithelial cells during cellularization. In this Review, we will describe the dynamics of cortical organization in early Drosophila embryos and discuss the processes and mechanisms underlying cortical remodeling.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Cell Sci.
    Title
    Journal of Cell Science
    Publication Year
    1966-
    ISBN/ISSN
    0021-9533
    Data From Reference