FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Dean, D., Weinstein, H., Amin, S., Karno, B., McAvoy, E., Hoy, R., Recknagel, A., Jarvis, C., Deitcher, D. (2018). Extending julius seizure, a bang-sensitive gene, as a model for studying epileptogenesis: Cold shock, and a new insertional mutation.  Fly 12(1): 55--61.
FlyBase ID
FBrf0238708
Publication Type
Research paper
Abstract
The bang-sensitive (BS) mutants of Drosophila are an important model for studying epilepsy. We recently identified a novel BS locus, julius seizure (jus), encoding a protein containing two transmembrane domains and an extracellular cysteine-rich loop. We also determined that jussda iso7.8, a previously identified BS mutation, is an allele of jus by recombination, deficiency mapping, complementation testing, and genetic rescue. RNAi knockdown revealed that jus expression is important in cholinergic neurons and that the critical stage of jus expression is the mid-pupa. Finally, we found that a functional, GFP-tagged genomic construct of jus is expressed mostly in axons of the neck connectives and of the thoracic abdominal ganglia. In this Extra View article, we show that a MiMiC GFP-tagged Jus is localized to the same nervous system regions as the GFP-tagged genomic construct, but its expression is mostly confined to cell bodies and it causes bang-sensitivity. The MiMiC GFP-tag lies in the extracellular loop while the genomic construct is tagged at the C-terminus. This suggests that the alternate position of the GFP tag may disrupt Jus protein function by altering its subcellular localization and/or stability. We also show that a small subset of jus-expressing neurons are responsible for the BS phenotype. Finally, extending the utility of the BS seizure model, we show that jus mutants exhibit cold-sensitive paralysis and are partially sensitive to strobe-induced seizures.
PubMed ID
PubMed Central ID
PMC5927695 (PMC) (EuropePMC)
Related Publication(s)
Research paper

julius seizure, a Drosophila Mutant, Defines a Neuronal Population Underlying Epileptogenesis.
Horne et al., 2017, Genetics 205(3): 1261--1269 [FBrf0235003]

Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Fly
    Title
    Fly
    Publication Year
    2007-
    ISBN/ISSN
    1933-6934 1933-6942
    Data From Reference
    Aberrations (1)
    Alleles (9)
    Genes (3)
    Human Disease Models (1)
    Insertions (4)
    Transgenic Constructs (5)