FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Bonner, A.M., Hawley, R.S. (2019). Functional Consequences of the Evolution of Matrimony, a Meiosis-Specific Inhibitor of Polo Kinase.  Mol. Biol. Evol. 36(1): 69--83.
FlyBase ID
FBrf0241273
Publication Type
Research paper
Abstract
Meiosis is a defining characteristic of eukaryotes, believed to have evolved only once, over one billion years ago. While the general progression of meiotic events is conserved across multiple diverse organisms, the specific pathways and proteins involved can be highly divergent, even within species from the same genus. Here we investigate the rapid evolution of Matrimony (Mtrm), a female meiosis-specific regulator of Polo kinase (Polo) in Drosophila. Mtrm physically interacts with Polo and is required to restrict the activity of Polo during meiosis. Despite Mtrm's critical role in meiosis, sequence conservation within the genus Drosophila is poor. To explore the functional significance of this rapid divergence, we expressed Mtrm proteins from 12 different Drosophila species in the Drosophila melanogaster female germline. Distantly related Mtrm homologs are able to both physically interact with D. melanogaster Polo and rescue the meiotic defects seen in mtrm mutants. However, these distant homologs are not properly degraded after the completion of meiosis. Rather, they continue to inhibit Polo function in the early embryo, resulting in dominant maternal-effect lethality. We show that the ability of Mtrm to be properly degraded, and thus release Polo, is partially due to residues or motifs found within Mtrm's least-conserved regions. We hypothesize that, while Mtrm regions critical for its meiotic function are under strong purifying selection, changes that occurred in its unconserved regions may have been advantageous, potentially by affecting the timing or duration of meiosis and/or the early embryonic divisions.
PubMed ID
PubMed Central ID
PMC6340472 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Biol. Evol.
    Title
    Molecular Biology and Evolution
    Publication Year
    1983-
    ISBN/ISSN
    0737-4038 1537-1719
    Data From Reference
    Aberrations (1)
    Alleles (37)
    Genes (14)
    Physical Interactions (1)
    Natural transposons (1)
    Experimental Tools (2)
    Transgenic Constructs (35)