Open Close
Reference
Citation
Tsakiri, E.N., Gumeni, S., Iliaki, K.K., Benaki, D., Vougas, K., Sykiotis, G.P., Gorgoulis, V.G., Mikros, E., Scorrano, L., Trougakos, I.P. (2019). Hyperactivation of Nrf2 increases stress tolerance at the cost of aging acceleration due to metabolic deregulation.  Aging Cell 18(1): e12845.
FlyBase ID
FBrf0241318
Publication Type
Research paper
Abstract
Metazoans viability depends on their ability to regulate metabolic processes and also to respond to harmful challenges by mounting anti-stress responses; these adaptations were fundamental forces during evolution. Central to anti-stress responses are a number of short-lived transcription factors that by functioning as stress sensors mobilize genomic responses aiming to eliminate stressors. We show here that increased expression of nuclear factor erythroid 2-related factor (Nrf2) in Drosophila activated cytoprotective modules and enhanced stress tolerance. However, while mild Nrf2 activation extended lifespan, high Nrf2 expression levels resulted in developmental lethality or, after inducible activation in adult flies, in altered mitochondrial bioenergetics, the appearance of Diabetes Type 1 hallmarks and aging acceleration. Genetic or dietary suppression of Insulin/IGF-like signaling (IIS) titrated Nrf2 activity to lower levels, largely normalized metabolic pathways signaling, and extended flies' lifespan. Thus, prolonged stress signaling by otherwise cytoprotective short-lived stress sensors perturbs IIS resulting in re-allocation of resources from growth and longevity to somatic preservation and stress tolerance. These findings provide a reasonable explanation of why most (if not all) cytoprotective stress sensors are short-lived proteins, and it also explains the build-in negative feedback loops (shown here for Nrf2); the low basal levels of these proteins, and why their suppressors were favored by evolution.
PubMed ID
PubMed Central ID
PMC6351879 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Aging Cell
    Title
    Aging Cell
    Publication Year
    2002-
    ISBN/ISSN
    1474-9718 1474-9728
    Data From Reference