FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Morciano, P., Di Giorgio, M.L., Porrazzo, A., Licursi, V., Negri, R., Rong, Y., Cenci, G. (2019). Depletion of ATP-Citrate Lyase (ATPCL) Affects Chromosome Integrity Without Altering Histone Acetylation in Drosophila Mitotic Cells.  Front. Physiol. 10(): 383.
FlyBase ID
FBrf0242152
Publication Type
Research paper
Abstract
The Citrate Lyase (ACL) is the main cytosolic enzyme that converts the citrate exported from mitochondria by the SLC25A1 carrier in Acetyl Coenzyme A (acetyl-CoA) and oxaloacetate. Acetyl-CoA is a high-energy intermediate common to a large number of metabolic processes including protein acetylation reactions. This renders ACL a key regulator of histone acetylation levels and gene expression in diverse organisms including humans. We have found that depletion of ATPCL, the Drosophila ortholog of human ACL, reduced levels of Acetyl CoA but, unlike its human counterpart, does not affect global histone acetylation and gene expression. Nevertheless, reduced ATPCL levels caused evident, although moderate, mitotic chromosome breakage suggesting that this enzyme plays a partial role in chromosome stability. These defects did not increase upon X-ray irradiation, indicating that they are not dependent on an impairment of DNA repair. Interestingly, depletion of ATPCL drastically increased the frequency of chromosome breaks (CBs) associated to mutations in scheggia, which encodes the ortholog of the mitochondrial citrate carrier SLC25A1 that is also required for chromosome integrity and histone acetylation. Our results indicate that ATPCL has a dispensable role in histone acetylation and prevents massive chromosome fragmentation when citrate efflux is altered.
PubMed ID
PubMed Central ID
PMC6458238 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Front. Physiol.
    Title
    Frontiers in physiology
    ISBN/ISSN
    1664-042X
    Data From Reference
    Aberrations (1)
    Alleles (6)
    Genes (5)
    Natural transposons (1)
    Insertions (2)
    Experimental Tools (1)
    Transgenic Constructs (2)