Open Close
Reference
Citation
Blount, J.R., Meyer, D.N., Akemann, C., Johnson, S.L., Gurdziel, K., Baker, T.R., Todi, S.V. (2019). Unanchored ubiquitin chains do not lead to marked alterations in gene expression in Drosophila melanogaster.  Biol. Open 8(5): bio043372.
FlyBase ID
FBrf0242492
Publication Type
Research paper
Abstract

The small protein modifier ubiquitin regulates various aspects of cellular biology through its chemical conjugation onto proteins. Ubiquitination of proteins presents itself in numerous iterations, from a single mono-ubiquitination event to chains of poly-ubiquitin. Ubiquitin chains can be attached onto other proteins or can exist as unanchored species, i.e. free from another protein. Unanchored ubiquitin chains are thought to be deleterious to the cell and rapidly disassembled into mono-ubiquitin. We recently examined the toxicity and utilization of unanchored poly-ubiquitin in Drosophila melanogaster We found that free poly-ubiquitin species are largely innocuous to flies and that free poly-ubiquitin can be controlled by being degraded by the proteasome or by being conjugated onto another protein as a single unit. Here, to explore whether an organismal defense is mounted against unanchored chains, we conducted RNA-Seq analyses to examine the transcriptomic impact of free poly-ubiquitin in the fly. We found ∼90 transcripts whose expression is altered in the presence of different types of unanchored poly-ubiquitin. The set of genes identified was essentially devoid of ubiquitin-, proteasome-, or autophagy-related components. The seeming absence of a large and multipronged response to unanchored poly-ubiquitin supports the conclusion that these species need not be toxic in vivo and underscores the need to re-examine the role of free ubiquitin chains in the cell.

PubMed ID
PubMed Central ID
PMC6550069 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Biol. Open
    Title
    Biology open
    ISBN/ISSN
    2046-6390
    Data From Reference