Open Close
Reference
Citation
Skouloudaki, K., Christodoulou, I., Khalili, D., Tsarouhas, V., Samakovlis, C., Tomancak, P., Knust, E., Papadopoulos, D.K. (2019). Yorkie controls tube length and apical barrier integrity during airway development.  J. Cell Biol. 218(8): 2762--2781.
FlyBase ID
FBrf0243150
Publication Type
Research paper
Abstract

Epithelial organ size and shape depend on cell shape changes, cell-matrix communication, and apical membrane growth. The Drosophila melanogaster embryonic tracheal network is an excellent model to study these processes. Here, we show that the transcriptional coactivator of the Hippo pathway, Yorkie (YAP/TAZ in vertebrates), plays distinct roles in the developing Drosophila airways. Yorkie exerts a cytoplasmic function by binding Drosophila Twinstar, the orthologue of the vertebrate actin-severing protein Cofilin, to regulate F-actin levels and apical cell membrane size, which are required for proper tracheal tube elongation. Second, Yorkie controls water tightness of tracheal tubes by transcriptional regulation of the δ-aminolevulinate synthase gene (Alas). We conclude that Yorkie has a dual role in tracheal development to ensure proper tracheal growth and functionality.

PubMed ID
PubMed Central ID
PMC6683733 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Cell Biol.
    Title
    Journal of Cell Biology
    Publication Year
    1966-
    ISBN/ISSN
    0021-9525
    Data From Reference