Open Close
Reference
Citation
Ke, H., Feng, Z., Liu, M., Sun, T., Dai, J., Ma, M., Liu, L.P., Ni, J.Q., Pastor-Pareja, J.C. (2018). Collagen secretion screening in Drosophila supports a common secretory machinery and multiple Rab requirements.  J. Genet. Genomics 45(6): 299--313.
FlyBase ID
FBrf0243598
Publication Type
Research paper
Abstract

Collagens are large secreted trimeric proteins making up most of the animal extracellular matrix. Secretion of collagen has been a focus of interest for cell biologists in recent years because collagen trimers are too large and rigid to fit into the COPII vesicles mediating transport from the endoplasmic reticulum (ER) to the Golgi. Collagen-specific mechanisms to create enlarged ER-to-Golgi transport carriers have been postulated, including cargo loading by conserved ER exit site (ERES) protein Tango1. Here, we report an RNAi screening for genes involved in collagen secretion in Drosophila. In this screening, we examined distribution of GFP-tagged Collagen IV in live animals and found 88 gene hits for which the knockdown produced intracellular accumulation of Collagen IV in the fat body, the main source of matrix proteins in the larva. Among these hits, only two affected collagen secretion specifically: PH4αEFB and Plod, encoding enzymes known to mediate posttranslational modification of collagen in the ER. Every other intracellular accumulation hit affected general secretion, consistent with the notion that secretion of collagen does not use a specific mode of vesicular transport, but the general secretory pathway. Included in our hits are many known players in the eukaryotic secretory machinery, like COPII and COPI components, SNAREs and Rab-GTPase regulators. Our further analysis of the involvement of Rab-GTPases in secretion shows that Rab1, Rab2 and RabX3, are all required at ERES, each of them differentially affecting ERES morphology. Abolishing activity of all three by Rep knockdown, in contrast, led to uncoupling of ERES and Golgi. We additionally present a characterization of a screening hit we named trabuco (tbc), encoding an ERES-localized TBC domain-containing Rab-GAP. Finally, we discuss the success of our screening in identifying secretory pathway genes in comparison to two previous secretion screenings in Drosophila S2 cells.

PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Genet. Genomics
    Title
    Journal of Genetics and Genomics [Yi chuan xue bao]
    Publication Year
    2007--
    ISBN/ISSN
    1673-8527
    Data From Reference
    Alleles (118)
    Genes (97)
    Natural transposons (1)
    Insertions (3)
    Experimental Tools (3)
    Transgenic Constructs (117)