FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Knudsen, K.E., Reid, W.R., Barbour, T.M., Bowes, L.M., Duncan, J., Philpott, E., Potter, S., Scott, M.J. (2020). Genetic Variation and Potential for Resistance Development to the tTA Overexpression Lethal System in Insects.  G3 (Bethesda) 10(4): 1271--1281.
FlyBase ID
FBrf0245357
Publication Type
Research paper
Abstract
Release of insect pests carrying the dominant lethal tetracycline transactivator (tTA) overexpression system has been proposed as a means for population suppression. High levels of the tTA transcription factor are thought to be toxic due to either transcriptional squelching or interference with protein ubiquitination. Here we utilized the Drosophila melanogaster Genetic Reference Panel (DGRP) to examine the influence of genetic variation on the efficacy of a female-specific tTA overexpression system. The level of female lethality between DGRP lines varied from 11 to 97% with a broad sense heritability of 0.89. A genome-wide association analysis identified 192 allelic variants associated with high or low lethality (P < 10-5), although none were significant when corrected for multiple testing. 151 of the variants fell within 108 genes that were associated with several biological processes including transcription and protein ubiquitination. In four lines with high female lethality, tTA RNA levels were similar or higher than in the parental tTA overexpression strain. In two lines with low lethality, tTA levels were about two fold lower than in the parental strain. However, in two other lines with low lethality, tTA levels were similar or approximately 30% lower. RNAseq analysis identified genes that were up or downregulated in the four low female lethal lines compared to the four high lethal lines. For example, genes associated with RNA processing and rRNA maturation were significantly upregulated in low lethal lines. Our data suggest that standing genetic variation in an insect population could provide multiple mechanisms for resistance to the tTA overexpression system.
PubMed ID
PubMed Central ID
PMC7144068 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    G3 (Bethesda)
    Title
    G3 : genes - genomes - genetics
    ISBN/ISSN
    2160-1836
    Data From Reference