FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Poovathumkadavil, P., Jagla, K. (2020). Genetic Control of Muscle Diversification and Homeostasis: Insights from Drosophila.  Cells 9(6): E1543.
FlyBase ID
FBrf0246180
Publication Type
Review
Abstract
In the fruit fly, Drosophila melanogaster, the larval somatic muscles or the adult thoracic flight and leg muscles are the major voluntary locomotory organs. They share several developmental and structural similarities with vertebrate skeletal muscles. To ensure appropriate activity levels for their functions such as hatching in the embryo, crawling in the larva, and jumping and flying in adult flies all muscle components need to be maintained in a functionally stable or homeostatic state despite constant strain. This requires that the muscles develop in a coordinated manner with appropriate connections to other cell types they communicate with. Various signaling pathways as well as extrinsic and intrinsic factors are known to play a role during Drosophila muscle development, diversification, and homeostasis. In this review, we discuss genetic control mechanisms of muscle contraction, development, and homeostasis with particular emphasis on the contractile unit of the muscle, the sarcomere.
PubMed ID
PubMed Central ID
PMC7349286 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Cells
    Title
    Cells
    ISBN/ISSN
    2073-4409
    Data From Reference