FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Montagna, A., Vajente, N., Pendin, D., Daga, A. (2020). In vivo Analysis of CRISPR/Cas9 Induced Atlastin Pathological Mutations in Drosophila.  Front. Neurosci. 14(): 547746.
FlyBase ID
FBrf0247242
Publication Type
Research paper
Abstract
The endoplasmic reticulum (ER) is a highly dynamic network whose shape is thought to be actively regulated by membrane resident proteins. Mutation of several such morphology regulators cause the neurological disorder Hereditary Sp astic Paraplegia (HSP), suggesting a critical role of ER shape maintenance in neuronal activity and function. Human Atlastin-1 mutations are responsible for SPG3A, the earliest onset and one of the more severe forms of dominant HSP. Atlastin has been initially identified in Drosophila as the GTPase responsible for the homotypic fusion of ER membrane. The majority of SPG3A-linked Atlastin-1 mutations map to the GTPase domain, potentially interfering with atlastin GTPase activity, and to the three-helix-bundle (3HB) domain, a region critical for homo-oligomerization. Here we have examined the in vivo effects of four pathogenetic missense mutations (two mapping to the GTPase domain and two to the 3HB domain) using two complementary approaches: CRISPR/Cas9 editing to introduce such variants in the endogenous atlastin gene and transgenesis to generate lines overexpressing atlastin carrying the same pathogenic variants. We found that all pathological mutations examined reduce atlastin activity in vivo although to different degrees of severity. Moreover, overexpression of the pathogenic variants in a wild type atlastin background does not give rise to the loss of function phenotypes expected for dominant negative mutations. These results indicate that the four pathological mutations investigated act through a loss of function mechanism.
PubMed ID
PubMed Central ID
PMC7593789 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Front. Neurosci.
    Title
    Frontiers in neuroscience
    ISBN/ISSN
    1662-453X 1662-4548
    Data From Reference
    Alleles (15)
    Genes (3)
    Human Disease Models (1)
    Natural transposons (1)
    Insertions (1)
    Experimental Tools (2)
    Transgenic Constructs (8)