FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Rathore, O.S., Silva, R.D., Ascensão-Ferreira, M., Matos, R., Carvalho, C., Marques, B., Tiago, M.N., Prudêncio, P., Andrade, R.P., Roignant, J.Y., Barbosa-Morais, N.L., Martinho, R.G. (2020). NineTeen Complex-subunit Salsa is required for efficient splicing of a subset of introns and dorsal-ventral patterning.  RNA 26(12): 1935--1956.
FlyBase ID
FBrf0247281
Publication Type
Research paper
Abstract
The NineTeen Complex (NTC), also known as pre-mRNA-processing factor 19 (Prp19) complex, regulates distinct spliceosome conformational changes necessary for splicing. During Drosophila midblastula transition, splicing is particularly sensitive to mutations in NTC-subunit Fandango, which suggests differential requirements of NTC during development. We show that NTC-subunit Salsa, the Drosophila ortholog of human RNA helicase Aquarius, is rate-limiting for splicing of a subset of small first introns during oogenesis, including the first intron of gurken Germline depletion of Salsa and splice site mutations within gurken first intron impair both adult female fertility and oocyte dorsal-ventral patterning, due to an abnormal expression of Gurken. Supporting causality, the fertility and dorsal-ventral patterning defects observed after Salsa depletion could be suppressed by the expression of a gurken construct without its first intron. Altogether, our results suggest that one of the key rate-limiting functions of Salsa during oogenesis is to ensure the correct expression and efficient splicing of the first intron of gurken mRNA. Retention of gurken first intron compromises the function of this gene most likely because it undermines the correct structure and function of the transcript 5'UTR.
PubMed ID
PubMed Central ID
PMC7668242 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    RNA
    Title
    RNA (New York, N.Y.)
    Publication Year
    1995-
    ISBN/ISSN
    1355-8382
    Data From Reference
    Alleles (9)
    Genes (27)
    Physical Interactions (2)
    Cell Lines (1)
    Natural transposons (1)
    Insertions (4)
    Experimental Tools (1)
    Transgenic Constructs (7)