FB2025_02 , released April 17, 2025
Reference Report
Open Close
Reference
Citation
Knipple, D.C., Rosenfield, C.L., Nielsen, R., You, K.M., Jeong, S.E. (2002). Evolution of the integral membrane desaturase gene family in moths and flies.  Genetics 162(4): 1737--1752.
FlyBase ID
FBrf0248423
Publication Type
Research paper
Abstract
Lepidopteran insects use sex pheromones derived from fatty acids in their species-specific mate recognition system. Desaturases play a particularly prominent role in the generation of structural diversity in lepidopteran pheromone biosynthesis as a result of the diverse enzymatic properties they have evolved. These enzymes are homologous to the integral membrane desaturases, which play a primary role in cold adaptation in eukaryotic cells. In this investigation, we screened for desaturase-encoding sequences in pheromone glands of adult females of eight lepidopteran species. We found, on average, six unique desaturase-encoding sequences in moth pheromone glands, the same number as is found in the genome database of the fly, Drosophila melanogaster, vs. only one to three in other characterized eukaryotic genomes. The latter observation suggests the expansion of this gene family in insects before the divergence of lepidopteran and dipteran lineages. We present the inferred homology relationships among these sequences, analyze nonsynonymous and synonymous substitution rates for evidence of positive selection, identify sequence and structural correlates of three lineages containing characterized enzymatically distinct desaturases, and discuss the evolution of this sequence family in insects.
PubMed ID
PubMed Central ID
PMC1462379 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Genetics
    Title
    Genetics
    Publication Year
    1916-
    ISBN/ISSN
    0016-6731
    Data From Reference
    Gene Groups (1)
    Genes (6)