FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
McInnes, J., Wierda, K., Snellinx, A., Bounti, L., Wang, Y.C., Stancu, I.C., Apóstolo, N., Gevaert, K., Dewachter, I., Spires-Jones, T.L., De Strooper, B., De Wit, J., Zhou, L., Verstreken, P. (2018). Synaptogyrin-3 Mediates Presynaptic Dysfunction Induced by Tau.  Neuron 97(4): 823--835.e8.
FlyBase ID
FBrf0250653
Publication Type
Research paper
Abstract
Synaptic dysfunction is an early pathological feature of neurodegenerative diseases associated with Tau, including Alzheimer's disease. Interfering with early synaptic dysfunction may be therapeutically beneficial to prevent cognitive decline and disease progression, but the mechanisms underlying synaptic defects associated with Tau are unclear. In disease conditions, Tau mislocalizes into pre- and postsynaptic compartments; here we show that, under pathological conditions, Tau binds to presynaptic vesicles in Alzheimer's disease patient brain. We define that the binding of Tau to synaptic vesicles is mediated by the transmembrane vesicle protein Synaptogyrin-3. In fly and mouse models of Tauopathy, reduction of Synaptogyrin-3 prevents the association of presynaptic Tau with vesicles, alleviates Tau-induced defects in vesicle mobility, and restores neurotransmitter release. This work therefore identifies Synaptogyrin-3 as the binding partner of Tau on synaptic vesicles, revealing a new presynapse-specific Tau interactor, which may contribute to early synaptic dysfunction in neurodegenerative diseases associated with Tau.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Neuron
    Title
    Neuron
    Publication Year
    1988-
    ISBN/ISSN
    0896-6273
    Data From Reference