FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Clerbaux, L.A., Schultz, H., Roman-Holba, S., Ruan, D.F., Yu, R., Lamb, A.M., Bommer, G.T., Kennell, J.A. (2021). The microRNA miR-33 is a pleiotropic regulator of metabolic and developmental processes in Drosophila melanogaster.  Dev. Dyn. 250(11): 1634--1650.
FlyBase ID
FBrf0251733
Publication Type
Research paper
Abstract
miR-33 family members are well characterized regulators of cellular lipid levels in mammals. Previous studies have shown that overexpression of miR-33 in Drosophila melanogaster leads to elevated triacylglycerol (TAG) levels in certain contexts. Although loss of miR-33 in flies causes subtle defects in larval and adult ovaries, the effects of miR-33 deficiency on lipid metabolism and other phenotypes impacted by metabolic state have not yet been characterized. We found that loss of miR-33 predisposes flies to elevated TAG levels, and we identified genes involved in TAG synthesis as direct targets of miR-33, including atpcl, midway, and Akt1. miR-33 mutants survived longer upon starvation but showed greater sensitivity to an oxidative stressor. We also found evidence that miR-33 is a negative regulator of cuticle pigmentation and that miR-33 mutants show a reduction in interfollicular stalk cells during oogenesis. Our data suggest that miR-33 is a conserved regulator of lipid homeostasis, and its targets are involved in both degradation and synthesis of fatty acids and TAG. The constellation of phenotypes involving tissues that are highly sensitive to metabolic state suggests that miR-33 serves to prevent extreme fluctuations in metabolically sensitive tissues.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Dev. Dyn.
    Title
    Developmental Dynamics
    Publication Year
    1992-
    ISBN/ISSN
    1058-8388
    Data From Reference