FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Joseph, B., Scala, C., Kondo, S., Lai, E.C. (2022). Molecular and genetic dissection of recursive splicing.  Life Sci Alliance 5(1): e202101063.
FlyBase ID
FBrf0251834
Publication Type
Research paper
Abstract
Intronic ratchet points (RPs) are abundant within long introns in the Drosophila genome and consist of juxtaposed splice acceptor and splice donor (SD) sites. Although they appear to encompass zero-nucleotide exons, we recently clarified that intronic recursive splicing (RS) requires a cryptic exon at the RP (an RS-exon), which is subsequently always skipped and thus absent from mRNA. In addition, Drosophila encodes a smaller set of expressed exons bearing features of RS. Here, we investigate mechanisms that regulate the choice between RP and RS-exon SDs. First, analysis of Drosophila RP SD mutants demonstrates that SD competition suppresses inclusion of cryptic exons in endogenous contexts. Second, characterization of RS-exon reporters implicates exonic sequences as influencing choice of RS-exon usage. Using RS-exon swap and mutagenesis assays, we show exonic sequences can determine RS-exon inclusion. Finally, we provide evidence that splicing can suppress utilization of RP SDs to enable RS-exon expression. Overall, multiple factors can influence splicing of Drosophila RS-exons, which usually result in their complete suppression as zero-nucleotide RPs, but occasionally yield translated RS-exons.
PubMed ID
PubMed Central ID
PMC8605326 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Life Sci Alliance
    Title
    Life science alliance
    ISBN/ISSN
    2575-1077
    Data From Reference
    Alleles (13)
    Genes (15)
    Cell Lines (1)