FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Wei, J.Y., Chu, S.Y., Huang, Y.C., Chung, P.C., Yu, H.H. (2022). Drosophila septin interacting protein 1 regulates neurogenesis in the early developing larval brain.  Sci. Rep. 12(1): 292.
FlyBase ID
FBrf0252297
Publication Type
Research paper
Abstract
Neurogenesis in the Drosophila central brain progresses dynamically in order to generate appropriate numbers of neurons during different stages of development. Thus, a central challenge in neurobiology is to reveal the molecular and genetic mechanisms of neurogenesis timing. Here, we found that neurogenesis is significantly impaired when a novel mutation, Nuwa, is induced at early but not late larval stages. Intriguingly, when the Nuwa mutation is induced in neuroblasts of olfactory projection neurons (PNs) at the embryonic stage, embryonic-born PNs are generated, but larval-born PNs of the same origin fail to be produced. Through molecular characterization and transgenic rescue experiments, we determined that Nuwa is a loss-of-function mutation in Drosophila septin interacting protein 1 (sip1). Furthermore, we found that SIP1 expression is enriched in neuroblasts, and RNAi knockdown of sip1 using a neuroblast driver results in formation of small and aberrant brains. Finally, full-length SIP1 protein and truncated SIP1 proteins lacking either the N- or C-terminus display different subcellular localization patterns, and only full-length SIP1 can rescue the Nuwa-associated neurogenesis defect. Taken together, these results suggest that SIP1 acts as a crucial factor for specific neurogenesis programs in the early developing larval brain.
PubMed ID
PubMed Central ID
PMC8742078 (PMC) (EuropePMC)
Associated Information
Other Information
Parent Publication
Data From Reference