FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Mariyappa, D., Rusch, D.B., Han, S., Luhur, A., Overton, D., Miller, D.F.B., Bergman, C.M., Zelhof, A.C. (2022). A novel transposable element-based authentication protocol for Drosophila cell lines.  G3 (Bethesda) 12(2): jkab403.
FlyBase ID
FBrf0252561
Publication Type
Research paper
Abstract
Drosophila cell lines are used by researchers to investigate various cell biological phenomena. It is crucial to exercise good cell culture practice. Poor handling can lead to both inter- and intra-species cross-contamination. Prolonged culturing can lead to introduction of large- and small-scale genomic changes. These factors, therefore, make it imperative that methods to authenticate Drosophila cell lines are developed to ensure reproducibility. Mammalian cell line authentication is reliant on short tandem repeat (STR) profiling; however, the relatively low STR mutation rate in Drosophila melanogaster at the individual level is likely to preclude the value of this technique. In contrast, transposable elements (TEs) are highly polymorphic among individual flies and abundant in Drosophila cell lines. Therefore, we investigated the utility of TE insertions as markers to discriminate Drosophila cell lines derived from the same or different donor genotypes, divergent sub-lines of the same cell line, and from other insect cell lines. We developed a PCR-based next-generation sequencing protocol to cluster cell lines based on the genome-wide distribution of a limited number of diagnostic TE families. We determined the distribution of five TE families in S2R+, S2-DRSC, S2-DGRC, Kc167, ML-DmBG3-c2, mbn2, CME W1 Cl.8+, and ovarian somatic sheath Drosophila cell lines. Two independent downstream analyses of the next-generation sequencing data yielded similar clustering of these cell lines. Double-blind testing of the protocol reliably identified various Drosophila cell lines. In addition, our data indicate minimal changes with respect to the genome-wide distribution of these five TE families when cells are passaged for at least 50 times. The protocol developed can accurately identify and distinguish the numerous Drosophila cell lines available to the research community, thereby aiding reproducible Drosophila cell culture research.
PubMed ID
PubMed Central ID
PMC9210319 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    G3 (Bethesda)
    Title
    G3 : genes - genomes - genetics
    ISBN/ISSN
    2160-1836
    Data From Reference