FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Eick, A.K., Ogueta, M., Buhl, E., Hodge, J.J.L., Stanewsky, R. (2022). The opposing chloride cotransporters KCC and NKCC control locomotor activity in constant light and during long days.  Curr. Biol. 32(6): 1420--1428.e4.
FlyBase ID
FBrf0253013
Publication Type
Research paper
Abstract
Cation chloride cotransporters (CCCs) regulate intracellular chloride ion concentration ([Cl-]i) within neurons, which can reverse the direction of the neuronal response to the neurotransmitter GABA.1 Na+ K+ Cl- (NKCC) and K+ Cl- (KCC) cotransporters transport Cl- into or out of the cell, respectively. When NKCC activity dominates, the resulting high [Cl-]i can lead to an excitatory and depolarizing response of the neuron upon GABAA receptor opening, while KCC dominance has the opposite effect.1 This inhibitory-to-excitatory GABA switch has been linked to seasonal adaption of circadian clock function to changing day length,2-4 and its dysregulation is associated with neurodevelopmental disorders such as epilepsy.5-8 In Drosophila melanogaster, constant light normally disrupts circadian clock function and leads to arrhythmic behavior.9 Here, we demonstrate a function for CCCs in regulating Drosophila locomotor activity and GABA responses in circadian clock neurons because alteration of CCC expression in circadian clock neurons elicits rhythmic behavior in constant light. We observed the same effects after downregulation of the Wnk and Fray kinases, which modulate CCC activity in a [Cl-]i-dependent manner. Patch-clamp recordings from the large LNv clock neurons show that downregulation of KCC results in a more positive GABA reversal potential, while KCC overexpression has the opposite effect. Finally, KCC and NKCC downregulation reduces or increases morning behavioral activity during long photoperiods, respectively. In summary, our results support a model in which the regulation of [Cl-]i by a KCC/NKCC/Wnk/Fray feedback loop determines the response of clock neurons to GABA, which is important for adjusting behavioral activity to constant light and long-day conditions.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Curr. Biol.
    Title
    Current Biology
    Publication Year
    1991-
    ISBN/ISSN
    0960-9822
    Data From Reference