FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Bourne, C.M., Lai, D.C., Schottenfeld-Roames, J. (2022). Regulators of the secretory pathway have distinct inputs into single-celled branching morphogenesis and seamless tube formation in the Drosophila trachea.  Dev. Biol. 490(): 100--109.
FlyBase ID
FBrf0254422
Publication Type
Research paper
Abstract
Biological tubes serve as conduits through which gas, nutrients and other important fluids are delivered to tissues. Most biological tubes consist of multiple cells connected by epithelial junctions. Unlike these multicellular tubes, seamless tubes are unicellular and lack junctions. Seamless tubes are present in various organ systems, including the vertebrate vasculature, C.elegans excretory system, and Drosophila tracheal system. The Drosophila tracheal system is a network of air-filled tubes that delivers oxygen to all tissues. Specialized cells within the tracheal system, called terminal cells, branch extensively and form seamless tubes. Terminal tracheal tubes are polarized; the lumenal membrane has apical identity whereas the outer membrane exhibits basal characteristics. Although various aspects of membrane trafficking have been implicated in terminal cell morphogenesis, the precise secretory pathway requirements for basal and apical membrane growth have yet to be elucidated. In the present study, we demonstrate that anterograde trafficking, retrograde trafficking and Golgi-to-plasma membrane vesicle fusion are each required for the complex branched architecture of the terminal cell, but their inputs during seamless lumen formation are more varied. The COPII subunit, Sec31, and ER exit site protein, Sec16, are critical for subcellular tube architecture, whereas the SNARE proteins Syntaxin 5, Syntaxin 1 and Syntaxin 18 are more generally required for seamless tube growth and maintenance. These data suggest that distinct components of the secretory pathway have differential contributions to basal and apical membrane growth and maintenance during terminal cell morphogenesis.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Dev. Biol.
    Title
    Developmental Biology
    Publication Year
    1959-
    ISBN/ISSN
    0012-1606
    Data From Reference