FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
AlOkda, A., Van Raamsdonk, J.M. (2023). Evolutionarily Conserved Role of Thioredoxin Systems in Determining Longevity.  Antioxidants (Basel) 12(4): 944.
FlyBase ID
FBrf0256386
Publication Type
Review
Abstract
Thioredoxin and thioredoxin reductase are evolutionarily conserved antioxidant enzymes that protect organisms from oxidative stress. These proteins also play roles in redox signaling and can act as a redox-independent cellular chaperone. In most organisms, there is a cytoplasmic and mitochondrial thioredoxin system. A number of studies have examined the role of thioredoxin and thioredoxin reductase in determining longevity. Disruption of either thioredoxin or thioredoxin reductase is sufficient to shorten lifespan in model organisms including yeast, worms, flies and mice, thereby indicating conservation across species. Similarly, increasing the expression of thioredoxin or thioredoxin reductase can extend longevity in multiple model organisms. In humans, there is an association between a specific genetic variant of thioredoxin reductase and lifespan. Overall, the cytoplasmic and mitochondrial thioredoxin systems are both important for longevity.
PubMed ID
PubMed Central ID
PMC10135697 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Antioxidants (Basel)
    Title
    Antioxidants
    ISBN/ISSN
    2076-3921
    Data From Reference
    Gene Groups (2)
    Genes (6)