FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Dyson, A., Ryan, M., Garg, S., Evans, D.G., Baines, R.A. (2023). A Targeted, Low-Throughput Compound Screen in a Drosophila Model of Neurofibromatosis Type 1 Identifies Simvastatin and BMS-204352 as Potential Therapies for Autism Spectrum Disorder (ASD).  eNeuro 10(5): ENEURO.0461--ENEURO.22.2023.
FlyBase ID
FBrf0256478
Publication Type
Research paper
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental condition for which there are no pharmacological therapies that effectively target its core symptomatology. Animal models of syndromic forms of ASD, such as neurofibromatosis type 1, may be of use in screening for such treatments. Drosophila larvae lacking Nf1 expression exhibit tactile hypersensitivity following mechanical stimulation, proposed to mirror the sensory sensitivity issues comprising part of the ASD diagnostic criteria. Such behavior is associated with synaptic dysfunction at the neuromuscular junction (NMJ). Both phenotypes may thus provide tractable outputs with which to screen for potential ASD therapies. In this study, we demonstrate that, while loss of Nf1 expression within the embryo is sufficient to impair NMJ synaptic transmission in the larva, constitutive Nf1 knock-down is required to induce tactile hypersensitivity, suggesting that a compound must be administered throughout development to rescue this behavior. With such a feeding regime, we identify two compounds from a targeted, low-throughput screen that significantly and consistently reduce, but do not fully rescue, tactile hypersensitivity in Nf1[P1] larvae. These are the HMG CoA-reductase inhibitor simvastatin, and the BKCa channel activator BMS-204352. At the NMJ, both compounds induce a significant reduction in the enhanced spontaneous transmission frequency of Nf1[P1] larvae, though again not to the level of vehicle-treated controls. However, both compounds fully rescue the increased quantal size of Nf1[P1] mutants, with simvastatin also fully rescuing their reduced quantal content. Thus, the further study of both compounds as potential ASD interventions is warranted.
PubMed ID
PubMed Central ID
PMC10198605 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    eNeuro
    Title
    eNeuro
    ISBN/ISSN
    2373-2822
    Data From Reference