FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Cheng, G., Chang, J., Gong, H., Zhou, W. (2023). A distinct Golgi-targeting mechanism of dGM130 in Drosophila neurons.  Front. Mol. Neurosci. 16(): 1206219.
FlyBase ID
FBrf0256829
Publication Type
Research paper
Abstract
GM130 is a matrix protein that is conserved in metazoans and involved in the architecture of the Golgi apparatus. In neurons, Golgi apparatus and dendritic Golgi outposts (GOs) have different compartmental organizations, and GM130 localization is present in both, indicating that GM130 has a unique Golgi-targeting mechanism. Here, we investigated the Golgi-targeting mechanism of the GM130 homologue, dGM130, using in vivo imaging of Drosophila dendritic arborization (da) neurons. The results showed that two independent Golgi-targeting domains (GTDs) with different Golgi localization characteristics in dGM130, together determined the precise localization of dGM130 in both the soma and dendrites. GTD1, covering the first coiled-coil region, preferentially targeted to somal Golgi rather than GOs; whereas GTD2, containing the second coiled-coil region and C-terminus, dynamically targeted to Golgi in both soma and dendrites. These findings suggest that there are two distinct mechanisms by which dGM130 targets to the Golgi apparatus and GOs, underlying the structural differences between them, and further provides new insights into the formation of neuronal polarity.
PubMed ID
PubMed Central ID
PMC10272413 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Front. Mol. Neurosci.
    Title
    Frontiers in molecular neuroscience
    ISBN/ISSN
    1662-5099
    Data From Reference