FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Yamaguchi, M., Huynh, M.A., Chiyonobu, T., Yoshida, H. (2023). Knockdown of Chronophage in the nervous system mimics features of neurodevelopmental disorders caused by BCL11A/B variants.  Exp. Cell Res. 433(2): 113827.
FlyBase ID
FBrf0258257
Publication Type
Research paper
Abstract
Neurodevelopmental disorders (NDD) are a group of disorders that include intellectual disability. Although several genes have been implicated in NDD, the molecular mechanisms underlying its pathogenesis remain unclear. Therefore, it is important to develop novel models to analyze the functions of NDD-causing genes in vivo. Recently, rare pathogenic variants of the B-cell lymphoma/leukemia11A/B (BCL11A/B) gene have been identified in several patients with NDD. Drosophila carries the Chronophage (Cph) gene, which has been predicted to be a homolog of BCL11A/B based on the conservation of the amino acid sequence. In the present study, we investigated whether nervous system-specific knockdown of Cph mimics NDD phenotypes in Drosophila. Nervous system-specific knockdown of Cph induced learning and locomotor defects in larvae and epilepsy-like behaviors in adults. The number of synaptic branches was also elevated in the larval neuromuscular junction without a corresponding increase in the number of boutons. Furthermore, the expression levels of putative target genes that are Drosophila homologs of the mammalian BCL11 target genes were decreased in Cph knockdown flies. These results suggest that Cph knockdown flies are a promising model for investigating the pathology of NDD-induced BCL11A/B dysfunction.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Exp. Cell Res.
    Title
    Experimental Cell Research
    Publication Year
    1950-
    ISBN/ISSN
    0014-4827
    Data From Reference
    Aberrations (1)
    Alleles (6)
    Genes (2)
    Human Disease Models (1)
    Insertions (2)
    Transgenic Constructs (4)