FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Ehweiner, A., Duch, C., Brembs, B. (2024). Wings of Change: aPKC/FoxP-dependent plasticity in steering motor neurons underlies operant self-learning in Drosophila.  F1000Res. 13(): 116.
FlyBase ID
FBrf0259563
Publication Type
Research paper
Abstract
Motor learning is central to human existence, such as learning to speak or walk, sports moves, or rehabilitation after injury. Evidence suggests that all forms of motor learning share an evolutionarily conserved molecular plasticity pathway. Here, we present novel insights into the neural processes underlying operant self-learning, a form of motor learning in the fruit fly Drosophila. We operantly trained wild type and transgenic Drosophila fruit flies, tethered at the torque meter, in a motor learning task that required them to initiate and maintain turning maneuvers around their vertical body axis (yaw torque). We combined this behavioral experiment with transgenic peptide expression, CRISPR/Cas9-mediated, spatio-temporally controlled gene knock-out and confocal microscopy. We find that expression of atypical protein kinase C (aPKC) in direct wing steering motoneurons co-expressing the transcription factor FoxP is necessary for this type of motor learning and that aPKC likely acts via non-canonical pathways. We also found that it takes more than a week for CRISPR/Cas9-mediated knockout of FoxP in adult animals to impair motor learning, suggesting that adult FoxP expression is required for operant self-learning. Our experiments suggest that, for operant self-learning, a type of motor learning in Drosophila, co-expression of atypical protein kinase C (aPKC) and the transcription factor FoxP is necessary in direct wing steering motoneurons. Some of these neurons control the wing beat amplitude when generating optomotor responses, and we have discovered modulation of optomotor behavior after operant self-learning. We also discovered that aPKC likely acts via non-canonical pathways and that FoxP expression is also required in adult flies.
PubMed ID
PubMed Central ID
PMC11109550 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    F1000Res.
    Title
    F1000Research
    ISBN/ISSN
    2046-1402
    Data From Reference