FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Sodders, M., Das, A., Bai, H. (2025). Glial peroxisome dysfunction induces axonal swelling and neuroinflammation in Drosophila.  G3 (Bethesda) 15(1): jkae243.
FlyBase ID
FBrf0261354
Publication Type
Research paper
Abstract
Glial cells are known to influence neuronal functions through glia-neuron communication. The present study aims to elucidate the mechanism behind peroxisome-mediated glia-neuron communication using Drosophila neuromuscular junction (NMJ) as a model system. We observe a high abundance of peroxisomes in the abdominal NMJ of adult Drosophila. Interestingly, glia-specific knockdown of peroxisome import receptor protein, Pex5, significantly increases axonal area and volume and leads to axon swelling. The enlarged axonal structure is likely deleterious, as the flies with glia-specific knockdown of Pex5 exhibit age-dependent locomotion defects. In addition, impaired peroxisomal ether lipid biosynthesis in glial cells also induces axon swelling. Consistent with our previous work, defective peroxisomal import function upregulates pro-inflammatory cytokine upd3 in glial cells, while glia-specific overexpression of upd3 induces axonal swelling. Furthermore, motor neuron-specific activation of the JAK-STAT pathway through hop overexpression results in axon swelling. Our findings demonstrated that impairment of glial peroxisomes alters axonal morphology, neuroinflammation, and motor neuron function.
PubMed ID
PubMed Central ID
PMC11708211 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    G3 (Bethesda)
    Title
    G3 : genes - genomes - genetics
    ISBN/ISSN
    2160-1836
    Data From Reference