Alvarado et al., 2004, Genetics 167(1): 187--202

From FlyBase Wiki
Jump to: navigation, search
Alvarado et al., 2004, Genetics 167(1): 187--202
FlyBase Identifier FBrf0178972
FlyBase URL
Publication Type paper
Publication Year 2004
PubMed ID 15166146
PubMed URL


Bipartite inhibition of Drosophila epidermal growth factor receptor by the extracellular and transmembrane domains of Kekkon1.


In Drosophila, signaling by the epidermal growth factor receptor (EGFR) is required for a diverse array of developmental decisions. Essential to these decisions is the precise regulation of the receptor's activity by both stimulatory and inhibitory molecules. To better understand the regulation of EGFR activity we investigated inhibition of EGFR by the transmembrane protein Kekkon1 (Kek1). Kek1 encodes a molecule containing leucine-rich repeats (LRR) and an immunoglobulin (Ig) domain and is the founding member of the Drosophila Kekkon family. Here we demonstrate with a series of Kek1-Kek2 chimeras that while the LRRs suffice for EGFR binding, inhibition in vivo requires the Kek1 juxta/transmembrane region. We demonstrate directly, and using a series of Kek1-EGFR chimeras, that Kek1 is not a phosphorylation substrate for the receptor in vivo. In addition, we show that EGFR inhibition is unique to Kek1 among Kek family members and that this function is not ligand or tissue specific. Finally, we have identified a unique class of EGFR alleles that specifically disrupt Kek1 binding and inhibition, but preserve receptor activation. Interestingly, these alleles map to domain V of the Drosophila EGFR, a region absent from the vertebrate receptors. Together, our results support a model in which the LRRs of Kek1 in conjunction with its juxta/transmembrane region direct association and inhibition of the Drosophila EGFR through interactions with receptor domain V.

Genes from Reference

Gene(s) Dmel\Dl, Dmel\w
Personal tools