FB2025_04 , released October 2, 2025
Gene: Dmel\B-H2
Open Close
General Information
Symbol
Dmel\B-H2
Species
D. melanogaster
Name
BarH2
Annotation Symbol
CG5488
Feature Type
FlyBase ID
FBgn0004854
Gene Model Status
Stock Availability
Gene Summary
B-H1 and B-H2 are regulated by members of the wg signaling pathway; wg and dpp. B-H1 and B-H2 are coexpressed and functionally required in R1 and R6 receptor cells and primary pigment cells for normal eye development. Coexpression is also required for the fate determination of external sensory organs, formation of notal microchaetae, formation of presutural macrochaetae, antennal development and for distal leg morphogenesis; segmentation and specification of tarsal segments 3-5. (UniProt, Q24256)
Contribute a Gene Snapshot for this gene.
Also Known As

Bar, BH2

Key Links
Genomic Location
Cytogenetic map
Sequence location
Recombination map
1-57
RefSeq locus
NC_004354 REGION:17314581..17324175
Sequence
Genomic Maps
Other Genome Views
The following external sites may use different assemblies or annotations than FlyBase.
Function
Gene Ontology (GO) Annotations (13 terms)
Molecular Function (3 terms)
Terms Based on Experimental Evidence (1 term)
CV Term
Evidence
References
Terms Based on Predictions or Assertions (3 terms)
CV Term
Evidence
References
Biological Process (9 terms)
Terms Based on Experimental Evidence (7 terms)
CV Term
Evidence
References
inferred from mutant phenotype
inferred from mutant phenotype
inferred from mutant phenotype
inferred from mutant phenotype
inferred from mutant phenotype
Terms Based on Predictions or Assertions (2 terms)
CV Term
Evidence
References
Cellular Component (1 term)
Terms Based on Experimental Evidence (0 terms)
Terms Based on Predictions or Assertions (1 term)
CV Term
Evidence
References
is_active_in nucleus
inferred from biological aspect of ancestor with PANTHER:PTN001551673
located_in nucleus
inferred by curator from GO:0000981
Protein Family (UniProt)
Belongs to the Antp homeobox family. (Q24256)
Summaries
Gene Group (FlyBase)
NK-LIKE HOMEOBOX TRANSCRIPTION FACTORS -
NK-like (NKL) homeobox transcription factors are sequence-specific DNA binding proteins that regulate transcription. NKL transcription factors are homeobox genes closely related to Hox-like genes, a number of which are found in the NK cluster. Many of the NKL members contain an Engrailed Homology 1 (EH1) motif. (Adapted from FBrf0232555 and PMID:22094586).
Protein Function (UniProtKB)
B-H1 and B-H2 are regulated by members of the wg signaling pathway; wg and dpp. B-H1 and B-H2 are coexpressed and functionally required in R1 and R6 receptor cells and primary pigment cells for normal eye development. Coexpression is also required for the fate determination of external sensory organs, formation of notal microchaetae, formation of presutural macrochaetae, antennal development and for distal leg morphogenesis; segmentation and specification of tarsal segments 3-5.
(UniProt, Q24256)
Summary (Interactive Fly)

transcription factor - homeodomain - neural selector genes involved in the development of the external sensilli - part of a transcription factor network that patterns the developing olfactory tissue - transcriptional repression of atonal by Bar prevents ectopic retinal neurogenesis

Gene Model and Products
Number of Transcripts
2
Number of Unique Polypeptides
2

Please see the JBrowse view of Dmel\B-H2 for information on other features

To submit a correction to a gene model please use the Contact FlyBase form

Protein Domains (via Pfam)
Isoform displayed:
Pfam protein domains
InterPro name
classification
start
end
Protein Domains (via SMART)
Isoform displayed:
SMART protein domains
InterPro name
classification
start
end
Structure
Protein 3D structure   (Predicted by AlphaFold)   (AlphaFold entry Q24256)

If you don't see a structure in the viewer, refresh your browser.
Model Confidence:
  • Very high (pLDDT > 90)
  • Confident (90 > pLDDT > 70)
  • Low (70 > pLDDT > 50)
  • Very low (pLDDT < 50)

AlphaFold produces a per-residue confidence score (pLDDT) between 0 and 100. Some regions with low pLDDT may be unstructured in isolation.

Experimentally Determined Structures
Crossreferences
Comments on Gene Model

Gene model reviewed during 5.47

Transcript Data
Annotated Transcripts
Name
FlyBase ID
RefSeq ID
Length (nt)
Assoc. CDS (aa)
FBtr0074429
3102
645
FBtr0334458
3142
303
Additional Transcript Data and Comments
Reported size (kB)

3.8 (northern blot)

Comments
External Data
Crossreferences
Polypeptide Data
Annotated Polypeptides
Name
FlyBase ID
Predicted MW (kDa)
Length (aa)
Theoretical pI
UniProt
RefSeq ID
GenBank
FBpp0074203
70.0
645
6.87
FBpp0306534
33.2
303
5.29
Polypeptides with Identical Sequences

None of the polypeptides share 100% sequence identity.

Additional Polypeptide Data and Comments
Reported size (kDa)
Comments
External Data
Linkouts
Sequences Consistent with the Gene Model
Mapped Features

Click to get a list of regulatory features (enhancers, TFBS, etc.) and gene disruptions (point mutations, indels, etc.) within or overlapping Dmel\B-H2 using the Feature Mapper tool.

External Data
Crossreferences
Eukaryotic Promoter Database - A collection of databases of experimentally validated promoters for selected model organisms.
Linkouts
Expression Data
Testis-specificity index

The testis specificity index was calculated from modENCODE tissue expression data by Vedelek et al., 2018 to indicate the degree of testis enrichment compared to other tissues. Scores range from -2.52 (underrepresented) to 5.2 (very high testis bias).

2.12

Transcript Expression
No Assay Recorded
Stage
Tissue/Position (including subcellular localization)
Reference
in situ
Stage
Tissue/Position (including subcellular localization)
Reference
organism

Comment: maternally deposited

antennal anlage

Comment: reported as procephalic ectoderm anlage

central brain anlage

Comment: reported as procephalic ectoderm anlage

dorsal head epidermis anlage

Comment: reported as procephalic ectoderm anlage

visual anlage

Comment: reported as procephalic ectoderm anlage

antennal primordium

Comment: reported as procephalic ectoderm primordium

central brain primordium

Comment: reported as procephalic ectoderm primordium

visual primordium

Comment: reported as procephalic ectoderm primordium

dorsal head epidermis primordium

Comment: reported as procephalic ectoderm primordium

lateral head epidermis primordium

Comment: reported as procephalic ectoderm primordium

ventral head epidermis primordium

Comment: reported as procephalic ectoderm primordium

gnathal primordium

Comment: reported as gnathal lobes anlage

Additional Descriptive Data

B-H1 and B-H2 expression was described in embryos. They are coexpressed in intersegmental, dorsal epidermal cells and in some CNS cells. In the PNS, they are expressed in es neurons and a fraction of their support cells.

Marker for
 
Subcellular Localization
CV Term
Polypeptide Expression
No Assay Recorded
Stage
Tissue/Position (including subcellular localization)
Reference
immunolocalization
Stage
Tissue/Position (including subcellular localization)
Reference
Additional Descriptive Data

The B-H1 and B-H2 proteins are detected in the R1/R6 prephotoreceptor pair from late third larval instar to early pupal stages. Anterior and posterior primary pigment cells of the developing ommatidium are labeled starting at 20 hours of pupariation and continuing until at least 80 hours of pupariation.

B-H1 and B-H2 protein expression was described in embryos. They are coexpressed in intersegmental, dorsal epidermal cells and in some CNS cells. In the PNS, they are expressed in es neurons and a fraction of their support cells.

Marker for
 
Subcellular Localization
CV Term
Evidence
References
Expression Deduced from Reporters
Reporter: P{lArB}B-H2P058
Stage
Tissue/Position (including subcellular localization)
Reference
High-Throughput Expression Data
Associated Tools

JBrowse - Visual display of RNA-Seq signals

View Dmel\B-H2 in JBrowse
RNA-Seq by Region - Search RNA-Seq expression levels by exon or genomic region
Reference
See Gelbart and Emmert, 2013 for analysis details and data files for all genes.
Developmental Proteome: Life Cycle
Developmental Proteome: Embryogenesis
External Data and Images
Linkouts
BDGP expression data - Patterns of gene expression in Drosophila embryogenesis
DRscDB - A single-cell RNA-seq resource for data mining and data comparison across species
EMBL-EBI Single Cell Expression Atlas - Single cell expression across species
FlyAtlas - Adult expression by tissue, using Affymetrix Dros2 array
FlyAtlas2 - A Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data
Flygut - An atlas of the Drosophila adult midgut
Images
Alleles, Insertions, Transgenic Constructs, and Aberrations
Classical and Insertion Alleles ( 4 )
For All Classical and Insertion Alleles Show
 
Other relevant insertions
Transgenic Constructs ( 11 )
For All Alleles Carried on Transgenic Constructs Show
Transgenic constructs containing/affecting coding region of B-H2
Transgenic constructs containing regulatory region of B-H2
Aberrations (Deficiencies and Duplications) ( 3 )
Variants
Variant Molecular Consequences
Alleles Representing Disease-Implicated Variants
Phenotypes
Orthologs
Human Orthologs (via DIOPT v9.1)
Species\Gene Symbol
Score
Best Score
Best Reverse Score
Alignment
Complementation?
Transgene?
Homo sapiens (Human) (111)
10 of 14
Yes
Yes
9 of 14
No
No
4 of 14
No
Yes
4 of 14
No
Yes
2 of 14
No
No
2 of 14
No
No
2 of 14
No
No
2 of 14
No
No
2 of 14
No
No
2 of 14
No
No
2 of 14
No
No
2 of 14
No
No
2 of 14
No
Yes
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1  
1 of 14
No
No
1  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
2  
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1  
1 of 14
No
No
1 of 14
No
No
1  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1  
1 of 14
No
No
1  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
2  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
2  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
Yes
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1  
1 of 14
No
No
1  
1 of 14
No
No
1 of 14
No
No
0  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1  
1 of 14
No
No
1  
Model Organism Orthologs (via DIOPT v9.1)
Species\Gene Symbol
Score
Best Score
Best Reverse Score
Alignment
Complementation?
Transgene?
Rattus norvegicus (Norway rat) (66)
9 of 14
Yes
Yes
7 of 14
No
No
3 of 14
No
No
3 of 14
No
Yes
2 of 14
No
No
2 of 14
No
No
2 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
Mus musculus (laboratory mouse) (88)
9 of 14
Yes
Yes
7 of 14
No
No
3 of 14
No
No
3 of 14
No
Yes
2 of 14
No
No
2 of 14
No
No
2 of 14
No
No
2 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
0  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
0  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
5  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
Yes
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1  
Xenopus tropicalis (Western clawed frog) (91)
7 of 13
Yes
Yes
7 of 13
Yes
Yes
7 of 13
Yes
Yes
2 of 13
No
Yes
2 of 13
No
Yes
1 of 13
No
No
1 of 13
No
Yes
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
Yes
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
Yes
1 of 13
No
Yes
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
Danio rerio (Zebrafish) (94)
10 of 14
Yes
Yes
9 of 14
No
Yes
7 of 14
No
No
4 of 14
No
Yes
3 of 14
No
No
2 of 14
No
No
2 of 14
No
No
2 of 14
No
No
2 of 14
No
No
2 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
Caenorhabditis elegans (Nematode, roundworm) (37)
8 of 14
Yes
Yes
7 of 14
No
No
2 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
0  
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1 of 14
No
No
1  
1 of 14
No
No
Anopheles gambiae (African malaria mosquito) (45)
3 of 12
No
No
1 of 12
No
No
1 of 12
No
No
Arabidopsis thaliana (thale-cress) (46)
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
2 of 13
Yes
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
Yes
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
1 of 13
No
No
Saccharomyces cerevisiae (Brewer's yeast) (2)
1 of 13
Yes
No
1 of 13
Yes
No
Schizosaccharomyces pombe (Fission yeast) (2)
1 of 12
Yes
No
1 of 12
Yes
No
Escherichia coli (enterobacterium) (0)
Other Organism Orthologs (via OrthoDB)
Data provided directly from OrthoDB:B-H2. Refer to their site for version information.
Paralogs
Paralogs (via DIOPT v9.1)
Drosophila melanogaster (Fruit fly) (79)
9 of 13
4 of 13
4 of 13
4 of 13
4 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
3 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
2 of 13
1 of 13
1 of 13
1 of 13
1 of 13
1 of 13
1 of 13
1 of 13
1 of 13
1 of 13
1 of 13
1 of 13
1 of 13
1 of 13
1 of 13
1 of 13
1 of 13
1 of 13
1 of 13
1 of 13
1 of 13
Human Disease Associations
FlyBase Human Disease Model Reports
    Disease Ontology (DO) Annotations
    Models Based on Experimental Evidence ( 0 )
    Allele
    Disease
    Evidence
    References
    Potential Models Based on Orthology ( 0 )
    Human Ortholog
    Disease
    Evidence
    References
    Modifiers Based on Experimental Evidence ( 0 )
    Allele
    Disease
    Interaction
    References
    Disease Associations of Human Orthologs (via DIOPT v9.1 and OMIM)
    Note that ortholog calls supported by only 1 or 2 algorithms (DIOPT score < 3) are not shown.
    Homo sapiens (Human)
    Gene name
    Score
    OMIM
    OMIM Phenotype
    DO term
    Complementation?
    Transgene?
    Functional Complementation Data
    Functional complementation data is computed by FlyBase using a combination of the orthology data obtained from DIOPT and OrthoDB and the allele-level genetic interaction data curated from the literature.
    Interactions
    Summary of Physical Interactions
    Summary of Genetic Interactions
    Interaction Browsers
    Starting gene(s)
    Interaction type
    Interacting gene(s)
    Reference
    Starting gene(s)
    Interaction type
    Interacting gene(s)
    Reference
    External Data
    Linkouts
    DroID - A comprehensive database of gene and protein interactions.
    MIST (protein-protein) - An integrated Molecular Interaction Database
    Pathways
    Signaling Pathways (FlyBase)
    Metabolic Pathways
    FlyBase
    External Links
    External Data
    Linkouts
    Class of Gene
    Genomic Location and Detailed Mapping Data
    Chromosome (arm)
    X
    Recombination map
    1-57
    Cytogenetic map
    Sequence location
    FlyBase Computed Cytological Location
    Cytogenetic map
    Evidence for location
    16A1-16A1
    Limits computationally determined from genome sequence between P{EP}bazEP1446 and P{EP}EP1464
    Experimentally Determined Cytological Location
    Cytogenetic map
    Notes
    References
    15F9-16A1
    (determined by in situ hybridisation)
    Experimentally Determined Recombination Data
    Location

    1-56.7

    Left of (cM)
    Right of (cM)
    Notes
    Stocks and Reagents
    Stocks (30)
    Genomic Clones (19)
    cDNA Clones (18)
     

    Please Note This section lists cDNAs and ESTs that fall within the genomic extent of the gene model, which may include cDNAs and ESTs of genes within introns, or of overlapping genes. Please see JBrowse for alignment of the cDNAs and ESTs to the gene model.

    cDNA clones, fully sequenced
    BDGP DGC clones
    Other clones
    Drosophila Genomics Resource Center cDNA clones

    For each fully sequenced cDNA the DGRC maintains various forms of the cDNA (e.g tagged or untagged) in several different host vectors for subsequent cloning and expression in Drosophila and Drosophila cell lines.

    cDNA Clones, End Sequenced (ESTs)
    BDGP DGC clones
      RNAi and Array Information
      Linkouts
      DRSC - Results frm RNAi screens
      Antibody Information
      Laboratory Generated Antibodies
      Commercially Available Antibodies
       
      Cell Line Information
      Publicly Available Cell Lines
       
        Other Stable Cell Lines
         
          Other Comments

          RNAi generated by PCR using primers directed to this gene causes a cell growth and viability phenotype when assayed in Kc167 and S2R+ cells.

          B-H1 and B-H2 are functionally redundant and are essential for distal leg morphogenesis.

          B-H1 and B-H2 regulate the formation of microchaetae via activation of ac and sc. B-H1 and B-H2 is limited dorsally and posteriorly by dpp and ventrally by wg which is in turn regulated by dpp. In direction of increasing cytology: f? Fim? B-H2+ B-H1+ anon-X2?

          B-H1 and B-H2 may belong to a different class of prepattern genes expressed latitudinally, giving a different coordinate to the prepattern in the developing notum. They are required for the formation of notal microchaetae and presutural macrochaetae.

          B-H1 and B-H2 are expressed only in embryogenesis and metamorphosis. B-H1 and B-H2 are coexpressed and functionally required in R1 and R6 prephotoreceptor cells and anterior and posterior primary pigment cells for normal eye development.

          B and B-H2 are paired homeotic genes required for the fate determination of es organs. Immunostaining demonstrated that B and B-H2 proteins are coexpressed in embryonic CNS and PNS cells. Deletion of the entire bar region causes morphological changes in the complex es organs and partial conversion of the simple es organs from campaniform-like sensilla to trichoid sensilla.

          This study raises the possibilty that B-H1, not B, is the Bar gene and that more than one gene may be involved in Bar position effects.

          Relationship to Other Genes
          Source for database merge of
          Additional comments

          Dp(1;3)DC328 (which encompasses B-H2 but not B-H1) does not exhibit a Bar phenotype.

          Nomenclature History
          Source for database identify of
          Nomenclature comments
          Etymology
          Synonyms and Secondary IDs (10)
          Reported As
          Secondary FlyBase IDs
            Datasets (0)
            Study focus (0)
            Experimental Role
            Project
            Project Type
            Title
            Study result (0)
            Result
            Result Type
            Title
            External Crossreferences and Linkouts ( 38 )
            Sequence Crossreferences
            NCBI Gene - Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes, and links to genome-, phenotype-, and locus-specific resources worldwide.
            GenBank Nucleotide - A collection of sequences from several sources, including GenBank, RefSeq, TPA, and PDB.
            GenBank Protein - A collection of sequences from several sources, including translations from annotated coding regions in GenBank, RefSeq and TPA, as well as records from SwissProt, PIR, PRF, and PDB.
            RefSeq - A comprehensive, integrated, non-redundant, well-annotated set of reference sequences including genomic, transcript, and protein.
            UniProt/GCRP - The gene-centric reference proteome (GCRP) provides a 1:1 mapping between genes and UniProt accessions in which a single 'canonical' isoform represents the product(s) of each protein-coding gene.
            UniProt/Swiss-Prot - Manually annotated and reviewed records of protein sequence and functional information
            UniProt/TrEMBL - Automatically annotated and unreviewed records of protein sequence and functional information
            Other crossreferences
            AlphaFold DB - AlphaFold provides open access to protein structure predictions for the human proteome and other key proteins of interest, to accelerate scientific research.
            BDGP expression data - Patterns of gene expression in Drosophila embryogenesis
            DRscDB - A single-cell RNA-seq resource for data mining and data comparison across species
            EMBL-EBI Single Cell Expression Atlas - Single cell expression across species
            FlyAtlas2 - A Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data
            FlyMine - An integrated database for Drosophila genomics
            KEGG Genes - Molecular building blocks of life in the genomic space.
            MARRVEL_MODEL - MARRVEL (model organism gene)
            Linkouts
            Drosophila Genomics Resource Center - Drosophila Genomics Resource Center (DGRC) cDNA clones
            DroID - A comprehensive database of gene and protein interactions.
            DRSC - Results frm RNAi screens
            Eukaryotic Promoter Database - A collection of databases of experimentally validated promoters for selected model organisms.
            FlyAtlas - Adult expression by tissue, using Affymetrix Dros2 array
            FlyCyc Genes - Genes from a BioCyc PGDB for Dmel
            Flygut - An atlas of the Drosophila adult midgut
            Interactive Fly - A cyberspace guide to Drosophila development and metazoan evolution
            MIST (protein-protein) - An integrated Molecular Interaction Database
            References (125)