Open Close
Hayward, D.C., Delaney, S.J., Campbell, H.D., Ghysen, A., Benzer, S., Kasprzak, A.B., Cotsell, J.N., Young, I.G., Miklos, G.L.G. (1993). The sluggish-A gene of Drosophila melanogaster is expressed in the nervous system and encodes proline oxidase, a mitochondrial enzyme involved in glutamate biosynthesis.  Proc. Natl. Acad. Sci. U.S.A. 90(7): 2979--2983.
FlyBase ID
Publication Type
Research paper

Certain gene mutations in Drosophila melanogaster cause sluggish motor activity. We have localized the transcription unit of the sluggish-A gene to a 14.7-kb region at the base of the X chromosome and have cloned corresponding cDNAs. The predicted protein product has significant sequence similarity to Saccharomyces cerevisiae proline oxidase (EC, a mitochondrial enzyme which catalyzes the first step in the conversion of proline to glutamate. In the mutant fly, mitochondrial proline oxidase activity is reduced and has kinetic properties different from those of the wild type, providing further evidence that the gene encodes proline oxidase. Indeed, the free proline level in mutant flies is elevated. When the mutant is rescued by transformation, the proline oxidase and free proline levels, as well as the motor and phototactic behavior, are restored to normal. During embryonic development the sluggish-A transcript is predominantly expressed in the nervous system. Significantly, it has previously been reported that a mouse mutant, PRO/Re, which has reduced proline oxidase activity and elevated free proline levels, also exhibits sluggish behavior.

PubMed ID
PubMed Central ID
PMC46220 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Proc. Natl. Acad. Sci. U.S.A.
    Proceedings of the National Academy of Sciences of the United States of America
    Publication Year
    Data From Reference
    Aberrations (3)
    Alleles (5)
    Genes (8)
    Transgenic Constructs (2)