Open Close
Reference
Citation
Cornell, M.J., Williams, T.A., Lamango, N.S., Coates, D., Corvol, P., Soubrier, F., Hoheisel, J., Lehrach, H., Isaac, R.E. (1995). Cloning and expression of an evolutionary conserved single-domain angiotensin converting enzyme from Drosophila melanogaster.  J. Biol. Chem. 270(23): 13613--13619.
FlyBase ID
FBrf0081664
Publication Type
Research paper
Abstract

Mammalian somatic angiotensin converting enzyme (EC 3.4.15.1, ACE) consists of two highly homologous (N- and C-) domains encoded by a duplicated gene. We have identified an apparent single-domain (67 kDa) insect angiotensin converting enzyme (AnCE) in embryos of Drosophila melanogaster which converts angiotensin I to angiotensin II (Km, 365 microM), removes Phe-Arg from the C terminus of bradykinin (Km, 22 microM), and is inhibited by ACE inhibitors, captopril (IC50 = 1.1 x 10(-9) M) and trandolaprilat (IC50 = 1.6 x 10(-8) M). We also report the cloning and expression of a Drosophila AnCE cDNA which codes for a single-domain 615-amino acid protein with a predicted 17-amino acid signal peptide and regions with high levels of homology to both the N- and C-domains of mammalian somatic ACE, especially around the active site consensus sequence. Northern analysis identified a single 2.1-kilobase mRNA in Drosophila embryos, and Southern analysis of Drosophila genomic DNA indicates that the insect gene is not duplicated. When expressed in COS-7 cells, the AnCE protein is a secreted enzyme, which converts angiotensin I to angiotensin II and is inhibited by captopril (IC50 = 5.6 x 10(-9) M) and trandolaprilat (IC50 = 2 x 10(-8) M). The evolutionary significance of these results is discussed.

PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Biol. Chem.
    Title
    Journal of Biological Chemistry
    Publication Year
    1905-
    ISBN/ISSN
    0021-9258
    Data From Reference
    Genes (1)