Open Close
Reference
Citation
Sonnenfeld, M.J., Jacobs, J.R. (1995). Macrophages and glia participate in the removal of apoptotic neurons from the Drosophila embryonic nervous system.  J. Comp. Neurol. 359(4): 644--652.
FlyBase ID
FBrf0084391
Publication Type
Research paper
Abstract

Cell death in the Drosophila embryonic central nervous system (CNS) proceeds by apoptosis, which is revealed ultrastructurally by nuclear condensation, shrinkage of cytoplasmic volume, and preservation of intracellular organelles. Apoptotic cells do not accumulate in the CNS but are continuously removed and engulfed by phagocytic haemocytes. To determine whether embryonic glia can function as phagocytes, we studied serial electronic microscopic sections of the Drosophila CNS. Apoptotic cells in the nervous system are engulfed by a variety of glia including midline glia, interface (or longitudinal tract) glia, and nerve root glia. However, the majority of apoptotic cells in the CNS are engulfed by subperineurial glia in a fashion similar to the microglia of the vertebrate CNS. A close proximity between macrophages and subperineurial glia suggests that glia may transfer apoptotic profiles to the macrophages. Embryos affected by the maternal-effect mutation Bicaudal-D have no macrophages. In the absence of macrophages, most apoptotic cells are retained at the outer surfaces of the CNS, and subperineurial glia contain an abundance of apoptotic cells. Some apoptotic cells are expelled from the CNS, which suggests that the removal of apoptotic cells can occur in the absence of macrophages. The number of subperineurial glia is unaffected by changes in the rate of neuronal apoptosis.

PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Comp. Neurol.
    Title
    Journal of Comparative Neurology
    Publication Year
    1911-
    ISBN/ISSN
    0021-9967
    Data From Reference
    Aberrations (2)
    Alleles (3)
    Genes (3)
    Transgenic Constructs (1)